首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.  相似文献   

2.
De Aguiar D  Hartl DL 《Genetica》1999,107(1-3):79-85
Two naturally occurring nonautonomous mariner elements were tested in vivo for their ability to down-regulate excision of a target element in the presence of functional mariner transposase. The tested elements were the peach element isolated from Drosophila mauritiana which encodes a transposase that differs from the autonomous element Mos1 in four amino acid replacements, and the DTBZ1 element isolated from D. teissieri which encodes a truncated protein consisting of the first 132 residues at the amino end of the normally 345-residue transposase. We provide evidence that the protein from the peach element does interact to down-regulate wildtype transposase, indicating that at least some nonautonomous elements in natural populations that retain their open reading frame may play a regulatory role. In contrast, our tests reveal at most a weak interaction between transposase from the autonomous Mos1 element and the truncated protein from DTBZ1 and none between Mos1 transposase and that from the distantly related mariner-like element Himar1 identified in the horn fly Haematobia irritans. Hence, the extent of regulatory crosstalk between mariner-like elements may be limited to closely related ones. The evolutionary implications of these results are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Wallau GL  Hua-Van A  Capy P  Loreto EL 《Genetica》2011,139(3):327-338
The evolutionary history of mariner-like elements (MLEs) in 49 mainly Neotropical drosophilid species is described. So far, the investigations about the distribution of MLEs were performed mainly using hybridization assays with the Mos1 element (the first mariner active element described) in a widely range of drosophilid species and these sequences were found principally in species that arose in Afrotropical and Sino-Indian regions. Our analysis in mainly Neotropical drosophilid species shows that twenty-three species presented MLEs from three different subfamilies in their genomes: eighteen species had MLEs from subfamily mellifera, fifteen from subfamily mauritiana and three from subfamily irritans. Eleven of these species exhibited elements from more than one subfamily in their genome. In two subfamilies, the analyzed coding region was uninterrupted and contained conserved catalytic motifs. This suggests that these sequences were probably derived from active elements. The species with these putative active elements are Drosophila mediopunctata and D. busckii for the mauritiana subfamily, and D. paramediostriata for the mellifera subfamily. The phylogenetic analysis of MLE, shows a complex evolutionary pattern, exhibiting vertical transfer, stochastic loss and putative events of horizontal transmission occurring between different Drosophilidae species, and even those belonging to more distantly related taxa such as Bactrocera tryoni (Tephritidae family), Sphyracephala europaea (Diopsoidea superfamily) and Buenoa sp. (Hemiptera order). Moreover, our data show that the distribution of MLEs is not restricted to Afrotropical and Sino-Indian species. Conversely, these TEs are also widely distributed in drosophilid species arisen in the Neotropical region.  相似文献   

4.
We have performed a phylogenetic analysis of 59 mariner elements in 14 Drosophilidae species that are related to the active Drosophila mauritiana Mos1 element. This includes 38 previously described sequences and 21 new sequences amplified by PCR from 10 species. Most of the elements detected are nonfunctional due to several frameshifts and deletions. They have been subdivided into four groups according to specific signatures in the nucleotidic and amino acid sequences. The mean nucleotide diversity is 4.8 ± 0.1% and reflects mainly the divergence of inactive elements over different periods. Although this probably gives rise to occasional homoplasies between distantly related taxa, the elements of each species remain grouped together. Horizontal transfer, reported previously between D. mauritiana and Zaprionus tuberculatus, can be extended to Z. verruca, while the Mos1-like element of Z. indianus belongs to another group. Interpretation of the phylogeny leads to a comparison of the influence of common ancestral sequences and putative horizontal transfers. Received: 31 May 1999 / Accepted: 28 June 1999  相似文献   

5.
6.
No mariner-like elements (MLEs) have been described until now in the genome of Drosophila melanogaster despite many experiments using molecular methods. However, analyses of sequence data from the Berkeley Drosophila Genome Project show that there are DNA sequences corresponding to pieces of MLE in the genome of D. melanogaster. The sequences of these elements have diverged considerably (about 40%) from any other sequences observed elsewhere. Moreover, the putative amino acid sequences encoded by the best conserved regions reveal that these sequences are clearly homologous to MLEs transposase.  相似文献   

7.
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.  相似文献   

8.
Carr M 《Genetica》2008,132(2):113-122
The Diopsid stalk-eyed flies are an increasingly well-studied group. Presented here is evidence of the first known transposable elements discovered in these flies. The vertumnana mariner subfamily was identified in the Diopsini tribe, but could not be amplified in species of the Sphyracephalini tribe. PCR screening with degenerate primers revealed that multiple mariner subfamilies are present within the Diopsidae. Most of the sequenced elements appear to be pseudogenes; however two subfamilies are shown to be evolving under purifying selection, raising the possibility that mariner is active in some Diopsid species. Evidence is presented of a possible horizontal transfer event involving an unknown Teleopsis species and the Tephritid fly Bactrocera neohumeralis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Transposable elements of the mariner family are widespread and have been found in the genome of plants, animals and insects. However, most of these elements contain multiple inactivating mutations and so far, only three naturally occurring mariner elements are known to be functional. In a previous study, a mariner‐like element called Hvmar1 was discovered in the genome of the tobacco budworm Heliothis virescens. Further analysis of the Hvmar1 nucleotide sequence revealed the presence of 30‐bp imperfect inverted terminal repeats and an intact open reading frame, which is considered to encode a functional transposase. In the present study, we show that the Hvmar1 element is active using interplasmid transposition assays in Drosophila melanogaster embryos. When injected into Drosophila embryos, the helper plasmid produced a transposase that was able to mediate transposition of the Hvmar1 element from a donor to a target plasmid. The transposition efficiency of Hvmar1 in D. melanogaster is approximately 11‐fold lower than that of the well‐known Mos1 mariner transposon. However, this efficiency is comparable to those observed previously with Mos1 in non‐Drosophila insects. We identified 10 independent interplasmid transposition events, albeit the recovery of these events was rare. In each case the Hvmar1 element transposed in a precise manner, with the characteristic TA dinucleotides being duplicated on insertion. Furthermore, two of the target sites identified have been used previously by Mos1 for insertion. The active transposition of Hvmar1 in D. melanogaster provides a basis for examining the mobility of this element in its natural host as well as a starting point for comparative studies with Mos1 and other functional mariner transposons.  相似文献   

10.
A new transposable element has been isolated from an unstable niaD mutant of the fungus Fusarium oxysporum. This element, called impala, is 1280 nucleotides long and has inverted repeats of 27 bp. Impala inserts into a TA site and leaves behind a footprint when it excises. The inserted element, impala-160, is cis-active, but is probably trans-defective owing to several stop codons and frameshifts. Similarities exist between the inverted repeats of impala and those of transposons belonging to the widely dispersed mariner and Tc1 families. Moreover, translation of the open reading frame revealed three regions showing high similarities with Tc1 from Caenorhabditis elegans and with the mariner element of Drosophila mauritiana. The overall comparison shows that impala occupies an intermediate position between the mariner and Tcl-like elements, suggesting that all these elements belong to the same superfamily. The degree of relatedness observed between these elements, described in different kingdoms, raises the question of their origin and evolution.  相似文献   

11.
分别以苹果果实总DNA和cDNA为模板,采用PCR、RT-PCR方法扩增、克隆乙烯不敏感基因(ethyleneinsensitive 2,EIN2),并利用生物信息学方法分析其核苷酸序列和蛋白质结构。结果表明:(1)以DNA和cDNA为模板的扩增结果完全相同,扩增的EIN2基因片段为4 378bp,尚未发现有内含子,开放阅读框全长3 282bp,编码1 093个氨基酸;苹果EIN2相对分子质量为118.9kD,等电点为5.52,其蛋白可能为脂溶性疏水蛋白。(2)所克隆苹果EIN2基因编码的氨基酸序列与拟南芥(AAD41077.1)、碧桃(ACY78397.1)和葡萄(CAN66374.1)EIN2基因编码的氨基酸序列一致性分别为52%、79%、62%。(3)构建的EIN2基因进化树显示,拟南芥、小盐芥、甜瓜、杨毛果EIN2基因亲缘关系较近,聚为一类;葡萄为一类;蒺藜苜蓿为一类;碧桃、矮牵牛、西红柿聚为一类;苹果单独为一类。而且苹果EIN2基因与碧桃等同源基因的亲缘关系相对较近,与拟南芥、小盐芥同源基因的亲缘关系相对较远。  相似文献   

12.
The Drosophila Mos1 element can be mobilized in species ranging from prokaryotes to protozoans and vertebrates, and the purified transposase can be used for in vitro transposition assays. In this report we developed a ‘mini-Mos1’ element and describe a number of useful derivatives suitable for transposon mutagenesis in vivo or in vitro. Several of these allow the creation and/or selection of tripartite protein fusions to a green fluorescent protein–phleomycin resistance (GFP-PHLEO) reporter/selectable marker. Such X-GFP-PHLEO-X fusions have the advantage of retaining 5′ and 3′ regulatory information and N- and C-terminal protein targeting domains. A Mos1 derivative suitable for use in transposon-insertion mediated linker insertion (TIMLI) mutagenesis is described, and transposons bearing selectable markers suitable for use in the protozoan parasite Leishmania were made and tested. A novel ‘negative selection’ approach was developed which permits in vitro assays of transposons lacking bacterial selectable markers. Application of this assay to several Mos1 elements developed for use in insects suggests that the large mariner pM[cn] element used previously in vivo is poorly active in vitro, while the Mos1-Act-EGFP transposon is highly active.  相似文献   

13.
The left (5) inverted terminal repeat (ITR) of the Mos1 mariner transposable element was altered by site-directed mutagenesis so that it exactly matched the nucleotide sequence of the right (3) ITR. The effects on the transposition frequency resulting from the use of two 3 ITRs, as well as those caused by the deletion of internal portions of the Mos1 element, were evaluated using plasmid-based transposition assays in Escherichia coli and Aedes aegypti. Donor constructs that utilized two 3 ITRs transposed with greater frequency in E. coli than did donor constructs with the wild-type ITR configuration. The lack of all but 10 bp of the internal sequence of Mos1 did not significantly affect the transposition frequency of a wild-type ITR donor. However, the lack of these internal sequences in a donor construct that utilized two 3 ITRs resulted in a further increase in transposition frequency. Conversely, the use of a donor construct with two 3 ITRs did not result in a significant increase in transposition in Ae. aegypti. Furthermore, deletion of a large portion of the internal Mos1 sequence resulted in the loss of transposition activity in the mosquito. The results of this study indicate the possible presence of a negative regulator of transposition located within the internal sequence, and suggest that the putative negative regulatory element may act to inhibit binding of the transposase to the left ITR. The results also indicate that host factors which are absent in E. coli, influence Mos1 transposition in Ae. aegypti.Communicated by G. P. Georgiev  相似文献   

14.
P. Capy  J. R. David  D. L. Hartl 《Genetica》1992,86(1-3):37-46
The population biology and molecular evolution of the transposable element mariner has been studied in the eight species of the melanogaster subgroup of the Drosophila subgenus Sophophora. The element occurs in D. simulans, D. mauritiana, D. sechellia, D. teissieri, and D. yakuba, but is not found in D. melanogaster, D. erecta, or D. orena. Sequence comparisons suggest that the mariner element was present in the ancestor of the species subgroup and was lost in some of the lineages. Most species contain both active and inactive mariner elements. A deletion of most of the 3 end characterizes many elements in D. teissieri, but in other species the inactive elements differ from active ones only by simple nucleotide substitutions or small additions/deletions. Active mariner elements from all species are quite similar in nucleotide sequence, although there are some-species-specific differences. Many, but not all, of the inactive elements are also quite closely related. The genome of D. mauritiana contains 20–30 copies of mariner, that of D. simulans 0–10, and that of D. sechellia only two copies (at fixed positions in the genome). The mariner situation in D. sechellia may reflect a reduced effective population size owing to the restricted geographical range of this species and its ecological specialization to the fruit of Morinda citrifolia.  相似文献   

15.
Summary The molecular cloning and nucleotide sequence of elements from potato and pepper that are related to the recently identified Tst1 element are described. Sequence analysis reveals considerable conservation of sequences internal to both the Tst1 element and two of the related elements identified here. In six potato clones analysed, the II by inverted repeat first identified in the Tst1 element is conserved. Several of the elements are flanked by an 8 by direct repeat. DNA fragments which were amplified from several pepper genomes by polymerase chain reaction (PCR) amplification using the inverted repeat as sequence primers also display considerable conservation of sequences internal to the Tst1 element. These data further support the possibility that Tst1 is a non-autonomous transposable element and that Tst1 might be the first example of a transposable element which occurs in several genera of solanaceous plants.  相似文献   

16.
An Alu-like element was identified in the 5′-UTR of psam 3, a Pisum sativum L. gene which shows enhanced expression during early events of AM formation. Two sets of primers specific for the 5′-UTR of the gene psam 3 and for the Alu-like element, respectively, were designed to study psam 3 gene organisation by targeted Alu PCR carried out on pea genomic DNA. PCR products free of Alu-like sequences were produced. A 1.0 kb DNA fragment showing up to 65 percnt; similarity to a Bam HI repeated sequence of Vicia faba was isolated in both wild-type and mycorrhiza-resistant pea. Southern blot analysis revealed the presence of other Bam HI related sequences in pea. The possibility that Bam HI repeated sequences might constitute complex repeating units together with an Alu-like element in the P. sativum genome is discussed.  相似文献   

17.

Background

An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes.

Methodology/Principal Findings

A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms.

Conclusions/Significance

A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts.  相似文献   

18.
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.  相似文献   

19.
Themariner transposable elements of several natural populations ofDrosophila teissieri, a rainforest species endemic to tropical Africa, were studied. Natural populations trapped along a transect from Zimbabwe to the Ivory Coast were analyzed by Southern blotting, in situ hybridization, cloning, and sequencing of PCR products. The Brazzaville population had some full-length elements, while the remaining populations had mainly deleted elements. The main class of deleted elements lacked a 500-bp segment. A mechanism is proposed that could generate such elements rapidly. In situ hybridizations showed that there are nomariner elements in pericentromeric heterochromatin. Finally, the phylogeny of theMos1-likemariner full-length elements is consistent with vertical transmission from the ancestor of themelanogaster subgroup. Correspondence to: P. Capy  相似文献   

20.
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a “cut-and-paste” mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA × TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号