首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established an efficient method for enzymatic production of cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) from inexpensive materials, N-acetylglucosamine (GlcNAc) and cytidine 5'-monophosphate (CMP). The Haemophilus influenzae nanE gene encoding GlcNAc 6-phosphate (GlcNAc 6-P) 2-epimerase and the Campylobacter jejuni neuB1 gene encoding N-acetylneuraminic acid (NeuAc) synthetase, both of whose products are involved in NeuAc biosynthesis, were cloned and co-expressed in Escherichia coli cells. We examined the synthesis of NeuAc from GlcNAc via GlcNAc 6-P, N-acetylmannosamine (ManNAc) 6-P, and ManNAc by the use of E. coli cells producing GlcNAc 6-P 2-epimerase and NeuAc synthetase, in expectation of biological functions of E. coli such as the supply of phosphoenolpyruvate (PEP), which is an essential substrate for NeuAc synthetase, GlcNAc phospholylation by the PEP-dependent phosphotransferase system, and dephospholylation of ManNAc 6-P. Eleven mM NeuAc was synthesized from 50 mM GlcNAc by recombinant E. coli cells with the addition of glucose as an energy source. Next we attempted to synthesize CMP-NeuAc from GlcNAc and CMP using yeast cells, recombinant E. coli cells, and H. influenzae CMP-NeuAc synthetase, and succeeded in efficient production of CMP-NeuAc due to a sufficient supply of PEP and efficient conversion of CMP to cytidine 5'-triphosphate by yeast cells.  相似文献   

2.
An Escherichia coli strain expressing three recombinant enzymes, i.e., cytidine 5'-monophosphate (CMP) kinase, sialic acid aldolase and cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase, was utilized as a biocatalyst for the production of CMP-NeuAc. Both recombinant E. coli extract and whole cells catalyzed the production of CMP-NeuAc from CMP (20 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetylphosphate (60 mM), resulting in 90% conversion yield based on initial CMP concentration used. It was confirmed that endogenous acetate kinase can catalyze not only the ATP regeneration in the conversion of CMP to CDP but also the conversion of CDP to CTP. On the other hand, endogenous pyruvate kinase and polyphosphate kinase could not regenerate ATP efficiently. The addition of exogenous acetate kinase to the reaction mixture containing the cell extract increased the conversion rate of CMP to CMP-NeuAc by about 1.5-fold, but the addition of exogenous inorganic pyrophosphatase had no influence on the reaction. This E. coli strain could also be employed as an enzyme source for in situ regeneration of CMP-NeuAc in a sialyltransferase catalyzed reaction. About 90% conversion yield of alpha2,3-sialyl-N-acetyllactosamine was obtained from N-acetyllactosamine (20 mM), CMP (2 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetyl phosphate (80 mM) using the recombinant E. coli extract and alpha2,3-sialyltransferase.  相似文献   

3.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

4.
The gene encoding CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) in Escherichia coli serotype O7 K1 was isolated and overexpressed in E.coli W3110. Maximum expression of 8-10% of the soluble E.coli protein was achieved by placing the gene with an engineered 5'-terminus and Shine-Dalgarno sequence into a pKK223 vector derivative behind the tac promoter. The overexpressed synthetase was purified to greater than 95% homogeneity in a single step by chromatography on high titre Orange A Matrex dye resin. Enzyme purified by this method was used directly for the synthesis of CMP-NeuAc and derivatives. The enzymatic synthesis of CMP-NeuAc was carried out on a multigram scale using equimolar CTP and N-acetylneuraminic acid as substrates. The resultant CMP-NeuAc, isolated as its disodium salt by ethanol precipitation, was prepared in an overall yield of 94% and was judged to be greater than 95% pure by 1H NMR analysis. N-Carbomethoxyneuraminic acid and N-carbobenzyloxyneuraminic acid were also found to be substrates of the enzyme; 5-azidoneuraminic acid was not a substrate of the enzyme. N-Carbomethoxyneuraminic acid was coupled to CMP at a rate similar to that observed with NeuAc, whereas N-carbobenzyloxyneuraminic acid was coupled greater than 100-fold more slowly. The high level of expression achieved with the E.coli synthetase, together with the high degree of purity readily obtainable from crude cell extracts, make the recombinant bacterial enzyme the preferred catalyst for the enzymatic synthesis of CMP-N-acetylneuraminic acid.  相似文献   

5.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

6.
The gene coding from CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase (Ec 2.7.7.43) was amplified from total DNA of E. coli strain K-235 through a primer-directed polymerase chain reaction. The gene was fused with a modified ribosome binding site of the original CMP-NeuAc synthetase gene and a decapeptide tag sequence which served as a marker for screening of expressed proteins. The gene was cloned into lambda ZAP vector at EcoRI and XbaI sites and overexpressed in E. coli Sure at a level approximately 1000 times that of the wild type. The decapeptide-containing enzyme retained almost the same specificity as indicated by the Vmax and Km values using CTP and NeuAc as substrates. A preparative synthesis of CMP-NeuAc based on the recombinant enzyme was demonstrated.  相似文献   

7.
In this study, we report the cloning, recombinant expression, and biochemical characterization of a heat-stable CMP-N-acylneuraminic acid (NeuAc) synthetase from Clostridium thermocellum ATCC 27405. A high throughput electrospray ionization mass spectrometry (ESI-MS)-based assay demonstrates that the enzyme has an absolute requirement for a divalent cation for activity and reaches maximum activity in the presence of 10 mM Mn2+. The enzyme is active at pH 8–13 in Tris–HCl buffer and at 37–60 °C, and maximum activity is observed at pH 9.5 and 50 °C in the presence of 0.2 mM dithiothreitol. In addition to NeuAc, the enzyme also accepts the analog N-glycolylneuraminic acid (NeuGc) as a substrate. The apparent Michaelis constants for cytidine triphosphate and NeuAc or NeuGc are 240 ± 20, 130 ± 10, and 160 ± 10 μM, respectively, with corresponding turnover numbers of 3.33, 2.25, and 1.66 s−1, respectively. An initial velocity study of the enzymatic reaction indicates an ordered bi–bi catalytic mechanism. In addition to demonstration of a thermostable and substrate-tolerant enzyme, confirmation of the biochemical function of a gene for CMP-NeuAc synthetase in C. thermocellum also opens the question of the biological function of CMP-NeuAc in such nonpathogenic microorganisms.  相似文献   

8.
An enzymatic activity responsible for the hydroxylation of CMP-NeuAc into CMP-N-glycolylneuraminic acid (CMP-NeuGc) was found in the cytosolic fraction after cellular fractionation of the mucosa of rat small intestine. It was maximum in the presence of NADPH or NADH, but it was reduced by 50% by addition of 1 mM EDTA. The Km value for CMP-NeuAc was 0.6 microM. The CMP-NeuAc hydroxylase activity paralleled the expression of the GM3 (NeuGc) phenotype in the epithelium of the small intestine and was not measurable in the mutant rats BN and SHR that only expressed GM3 (NeuAc). Furthermore, the only form of CMP-sialic acid present in the intestinal mucosa of the mutants was CMP-NeuAc, whereas in the other strains CMP-NeuGc accounted for 70-85% of the native CMP-sialic acids. Wild-type and CMP-NeuAc hydroxylase-deficient inbred rats were mated. Individuals of F1 and backcross generations were typed for the phenotypes GM3(NeuGc)/GM3(NeuAc) and the activity of CMP-NeuAc hydroxylase in the small intestine. It was found that the expression of NeuGc in GM3 depends on a single autosomal dominant gene and correlates with the activity of CMP-NeuAc hydroxylase. Two tissues other than small intestine, kidney and spleen, which expressed GM3(NeuGc) in BN and SHR, also expressed the CMP-NeuAc hydroxylase activity, as in the other strains. It was concluded that the key enzyme responsible for the presence of NeuGc in GM3 is a CMP-NeuAc hydroxylase and that mutant rats carry a defect that is specific to intestine. The comparative analysis of the respective contribution of NeuGc and NeuAc to the glycoprotein sialic acids of the small intestine showed that CMP-NeuAc hydroxylase is also responsible for part of the NeuGc present in the glycoproteins. However, the occurrence of 20-30% of NeuGc in the intestinal glycoproteins of the CMP-NeuAc hydroxylase-deficient rats indicated that there is another enzyme providing intestinal glycoproteins with NeuGc and operating under a different genetic control.  相似文献   

9.
Escherichia coli CMP-NeuAc synthetase (EC 2.7.7.43) catalyzes the synthesis of CMP-NeuAc from CTP and NeuAc, which is essential for the formation of capsule polysialylate for strain K1. Alignment of the amino acid sequence of E. coli CMP-NeuAc synthetase with those from other bacterial species revealed that the conserved motifs were located in its N termini, whereas the C terminus appeared to be redundant. Based on this information, a series of deletions from the 3'-end of the CMPNeuAc synthetase coding region was constructed and expressed in E. coli. As a result, the catalytic domain required for CMP-NeuAc synthetase was found to be in the N-terminal half consisting of amino acids 1-229. Using the strategy of tertiary structure prediction based on the homologous search of the secondary structure, the C-terminal half was recognized as an alpha1-subunit of bovine brain platelet-activating factor acetylhydrolase isoform I. The biochemical analyses showed that the C-terminal half consisting of amino acids 228-418 exhibited platelet-activating factor acetylhydrolase activity. The enzyme properties and substrate specificity were similar to that of bovine brain alpha1-subunit. Although its physiological function is still unclear, it has been proposed that the alpha1-subunit-like domain of E. coli may be involved in the traversal of the blood-brain barrier.  相似文献   

10.
Adult male rats, under starving and normal conditions, were injected intravenously with N-acetyl[3H]mannosamine and after various time intervals the specific radioactivities of free N-acetylneuraminic acid (NeuAc) and CMP-N-acetylneuraminic acid were determined in the liver. The specific radioactivity of free NeuAc was high even within 20s after injection; the maximum was reached between 7 and 10 min. The specific radioactivity of CMP-NeuAc showed a lag phase of approx. 1 min. Thereafter it increased quickly and rose above the specific radioactivity of free NeuAc, reaching a maximum about 20 min after injection. These results point to a channelling of the newly synthesized NeuAc molecules into a special compartment, from which they are preferentially used by the enzyme CMP-sialic acid synthetase. It is suggested that the cytosolic enzyme N-acetylneuraminic acid 9-phosphate phosphatase is working in concert with the nuclear localized enzyme CMP-N-acetylneuraminic acid synthetase. Incorporation of radioactive sialic acid into sialoglycoproteins in liver occurred 2 min after injection, and after 10 min bound radioactivity began to appear in the circulation, indicating a transport time of 8 min of sialoglycoproteins from the point of attachment of sialic acid to the point of excretion.  相似文献   

11.
RadioactiveN-acetylmannosamine was injected intravenously into rats to labelN-acetylneuraminic acid (NeuAc) and CMP-NeuAc. Nuclei were isolated from the livers using a non-aqueous technique to prevent leakage of polar metabolites. A preparation was obtained, which was eight times enriched in nuclei based on the ratio DNA/RNA. Free NeuAc and CMP-NeuAc were isolated from this nuclear fraction and from whole liver, and the specific radioactivities were determined. It appeared that at all time points studied, i.e. 1.5, 9.5, and 18 min after injection, the specific radioactivities of free NeuAc as well as of CMP-NeuAc in the nuclear preparation were lower than those in whole liver. Also no significant differences were found between free NeuAc and CMP-NeuAc in the ratio of specific radioactivities in the nuclear fraction/whole liver. Furthermore, no enzyme involved in the synthesis of NeuAc was enriched in the nuclear preparation as compared to various other cytosolic and non-cytosolic enzymes.Because newly synthesized NeuAc is channelled into a special pool and used for activation to CMP-NeuAc [Ferwerda W, Blok CM, van Rinsum J (1983) Biochem J 216:87–92], these results point to a site of activation of NeuAc to CMP-NeuAc other than the nuclear compartment. This might indicate that the nuclear-localized enzyme, CMP-NeuAc synthase, leaves the nucleus before exerting its action.Abbreviations ManNAc kinase (EC 2.7.1.60) ATP:2-acetamido-2-deoxy-d-mannose 6-phosphotransferase - GlcNAc kinase (EC 2.7.1.59) ATP:2-acetamido-2-deoxy-d-glucose 6-phosphotransferase - NeuAc 9-phosphatase (EC 3.1.3.29) N-acetylneuraminate 9-phosphate phosphohydrolase - CMP-NeuAc synthase (EC 2.7.7.43) CTP:N-acetylneuraminic acid cytidylyltransferase - glucose 6-phosphatase (EC 3.1.3.9) d-glucose 6-phosphate phosphohydrolase - p-nitrophenylphosphatase (EC 3.1.3.1/2) orthophosphoric monoester phosphohydrolase - LDH (EC 1.1.1.27) l-lactate:NAD oxidoreductase - (1-4)-galactsyltransferase (EC 2.4.1.38) -N-acetylglucosaminide (1-4)-galactosyltransferase  相似文献   

12.
The anomeric specificity of Escherichia coli CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase was investigated by NMR using 13C-labeled N-acetylneuraminic acid (NeuAc). Consumption of the beta-anomer of [2-13C]N-acetylneuraminic acid was observed upon addition of enzyme, with a concomitant appearance of an anomeric resonance for CMP-N-acetylneuraminic acid. Inhibition by substrate analogues the anomeric oxygen was determined in a similar manner using [2-13C,(50 atom %)18O]N-acetylneuraminic acid. An upfield shift of 1.5 Hz in the anomeric resonance of both the [13C]NeuAc substrate and CMP-[13C]NeuAc product was observed due to the 18O substitution. This result implies conservation of the NeuAc oxygen. Results of steady-state kinetic analysis suggest a sequential-type mechanism and therefore no covalent intermediate. Thus, CMP-beta-NeuAc is probably formed by a direct transfer of the anomeric oxygen of beta-NeuAc to the alpha-phosphate of CTP.  相似文献   

13.
Sialic acid metabolism in sialuria fibroblasts   总被引:5,自引:0,他引:5  
Sialuria is a rare inborn error of metabolism caused by excessive synthesis of sialic acid (N-acetylneuraminic acid, NeuAc). Fibroblasts cultured from the three known cases of sialuria contained 70-200-fold increases in soluble sialic acid, but normal concentrations of bound sialic acid. The sialic acid appeared in the cytosolic fraction of the cells on differential centrifugation, and was susceptible to borohydride reduction, suggesting that accumulated sialic acid was in the form of NeuAc and not CMP-NeuAc. In biochemical studies, CMP-NeuAc (50 microM) inhibited the UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase of normal fibroblasts by 84-100%, but inhibited the epimerase from sialuria cells by only 19-31%. Feeding sialuria cells up to 5 mM D-glucosamine for 72 h increased free sialic acid content 20-60%, but normal cells were unaffected by this treatment. Cytidine feeding (5 mM, 72 h) reduced the NeuAc content of sialuria cells, initially 112, 104, and 266 nmol/mg protein, by 63-71 nmol/mg protein; CMP-NeuAc concentrations, initially 4, 2, and 5 nmol/mg protein, increased by 14-33 nmol/mg protein. Consequently, the total cellular content of soluble sialic acid (NeuAc + CMP-NeuAc) was lowered 14-46% by cytidine feeding. The inheritance pattern of sialuria has not been determined. However, cells from both parents of one sialuria patient contained normal concentrations of free sialic acid, and the parental epimerase activity also responded normally to CMP-NeuAc. We conclude that the basic biochemical defect in all known cases of sialuria is a failure of CMP-NeuAc to feedback-inhibit UDP-GlcNAc 2-epimerase and cytidine feeding can lower the intracellular soluble sialic acid concentration of sialuria cells.  相似文献   

14.
Periodate oxidized CTP (oCTP) was used to investigate the importance of lysine residues in the CTP binding site of the cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) from Haemophilus ducreyi. The reaction of oCTP with the enzyme follows pseudo-first-order saturation kinetics, giving a maximum rate of inactivation of 0.6 min(-1) and a K(I) of 6.0 mM at pH 7.1. Mass spectrometric analysis of the modified enzyme provided data that was consistent with beta-elimination of triphosphate after the reaction of oCTP with the enzyme. A fully reduced enzyme-oCTP conjugate, retaining the triphosphate moiety, was obtained by inclusion of NaBH3CN in the reaction solution. The beta-elimination product of oCTP reacted several times more rapidly with the enzyme compared to equivalent concentrations of oCTP. This compound also formed a stable reduced morpholino adduct with CMP-NeuAc synthetase when the reaction was conducted in the presence of NaBH3CN, and was found to be a useful lysine modifying reagent. The substrate CTP was capable of protecting the enzyme to a large degree from inactivation by oCTP and its beta-elimination product. Lys19, a residue conserved in CMP-NeuAc synthetases, was identified as being labeled with the beta-elimination product of oCTP.  相似文献   

15.
"French type" sialuria, a presumably dominant disorder that, until now, had been documented in only five patients, manifests with mildly coarse facies, slight motor delay, and urinary excretion of large quantities (>1 g/d) of free N-acetylneuraminic acid (NeuAc). The basic defect consists of the very rare occurrence of failed feedback inhibition of a rate-limiting enzyme, in this case uridinediphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase, by a downstream product, in this case cytidine monophosphate (CMP)-NeuAc. We report a new patient with sialuria who has a heterozygous G-->A substitution in nucleotide 848 of the epimerase gene, which results in an R266Q change. The proband's other allele, as expected, had no mutation. However, the heterozygous R266Q mutation was detected in the patient's mother, who has similarly increased urinary levels of free NeuAc, thereby confirming, for the first time, the dominant mode of inheritance of this inborn error. The biochemical diagnosis of the proband was verified by the greatly increased level of free NeuAc in his cultured fibroblasts, the NeuAc distribution, mainly (59%) in the cytoplasm, and by the complete failure of 100 microM CMP-NeuAc to inhibit UDP-GlcNAc 2-epimerase activity in the mutant cells. These findings call for expansion of the phenotype to include adults and for more-extensive assaying of free NeuAc in the urine of children with mild developmental delay. The prevalence of sialuria is probably grossly underestimated.  相似文献   

16.
Four common sialic acids (Sia), NeuAc, N-glycolyl-neuraminic acid (NeuGc), 4-O-acetyl-N-acetylneuraminic acid (4-O-Ac-NeuAc), and 9-O-Ac-NeuAc were examined for activation to their corresponding CMP-sialic acid conjugates and subsequently for their transfer to glycoprotein oligosaccharides by purified mammalian sialyltransferases. CMP-sialic acid synthetases from calf brain and from bovine and equine submaxillary glands were found to convert NeuAc, NeuGc, and 9-O-Ac-NeuAc to their corresponding CMP-sailic acids. In contrast, no conversion of 4-O-Ac-NeuAc to CMP-4-O-Ac-NeuAc was observed for any of the three synthetases examined. A new procedure for the preparation of CMP-9-O-Ac-NeuAc, CMP-NeuGc, and CMP-NeuAc in high yield and purity was developed, using the calf brain CMP-sialic acid synthetase. Each of these derivatives was tested as donor substrates for six mammalian sialyltransferases purified from porcine, rat, and bovine tissues, including a bovine GalNAc alpha 2,6 sialyltransferase whose purification is described in this report. The sialyltransferases examined represent those which form the Sia alpha 2,6Gal beta 1,4-GlcNAc-, Sia alpha 2,3Gal beta 1,3(4)GlcNAc-, Sia alpha 2,3Gal beta 1,3-GalNAc- and Sia alpha 2,6GalNAc- sequences found on N-linked and O-linked oligosaccharides of glycoproteins. CMP-NeuAc and CMP-NeuGc were equally good donor substrates for all six sialyltransferases. However, transfer of 9-O-Ac-NeuAc from CMP-9-O-Ac-NeuAc varied from only 10% to nearly 70% that of the transfer of NeuAc from CMP-NeuAc. Results are viewed to define the relative roles of direct transfer of these sialic acids and modification of glycosidically bound NeuAc in glycoproteins.  相似文献   

17.
Activation and transfer of novel synthetic 9-substituted sialic acids   总被引:1,自引:0,他引:1  
In this report several NeuAc analogues differently modified at position C-9 were tested as substrates for CMP sialic acid synthase from bovine brain: the hydroxy group at C-9 was replaced by an amino, acetamido, benzamido, hexanoylamido and azido group. The synthase was partially purified by chromatography on CDP-hexanolamine--Sepharose. CMP-glycosides synthesized were measured by analytical HPLC at 275 nm. Each NeuAc analogue was activated to the respective CMP-glycoside: Km-values varied from 0.8 mM to 4.6 mM, the Km for NeuAc was 1.4 mM. Thus affinity of the enzyme was influenced only moderately by chemical modification at C-9. CMP-glycosides were synthesized on a preparative scale with good yield and characterized by analytical HPLC. In addition, 500-MHz 1H-NMR data of CMP-9-amino-NeuAc and CMP-9-acetamido-NeuAc were obtained. Each CMP-activated NeuAc analogue was a suitable donor substrate for Gal beta 1-4GlcNAc alpha 2,6-sialyltransferase from rat liver. Transfer was determined by the thiobarbituric acid method and by analytical HPLC at 200 nm. The results demonstrate that synthetic, not naturally occurring, non-labelled NeuAc analogues can be incorporated into glycoprotein with high yield.  相似文献   

18.
The hydroxylation of CMP-NeuAc has been demonstrated to be carried out by several factors including the soluble form of cytochromeb 5. In the present study, mouse liver cytosol was subjected to ammonium sulfate fractionation and cellulose phosphate column chromatography for the separation of two other essential fractions participating in the hydroxylation. One of the fractions, which bound to a cellulose phosphate column, was able to reduce the soluble cytochromeb 5, using NADH as an electron donor. The other fraction, which flowed through the column, was assumed to contain the terminal enzyme which accepts electrons from cytochromeb 5, activates oxygen, and catalyses the hydroxylation of CMP-NeuAc. Assay conditions for the quantitative determination of the terminal enzyme were established, and the activity of the enzyme in several tissues of mouse and rat was measured. The level of the terminal enzyme activity is associated with the expression ofN-glycolylneuraminic acid in these tissues, indicating that the expression of the terminal enzyme possibly regulates the overall velocity of CMP-NeuAc hydroxylation.Abbreviations CMP cytidine 5-monophosphate - NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - DTT dithiothreitol  相似文献   

19.
Sialuria is a rare inborn error of sialic acid (NeuAc) metabolism resulting from failure of CMP-NeuAc to adequately feedback inhibit the rate-limiting enzyme in sialic acid synthesis, UDP N-acetylglucosamine (UDP-GlcNAc) 2-epimerase. We describe the fourth reported sialuria patient, T.W., whose clinical features include developmental delay, coarse facies, and massive urinary excretion of sialic acid, Biochemical studies of T.W. fibroblasts revealed a 200-fold increase in free NeuAc content compared with normal. Bound NeuAc was only slightly elevated. The free NeuAc was predominantly in the cytosol fraction of fibroblasts after differential centrifugation, with only 4% of the free NeuAc content in other (nuclear, granular, and microsomal) cellular compartments. CMP-NeuAc inhibited UDPGlcNAc 2-epimerase by 80% in normal fibroblasts but inhibited the epimerase of T.W. (sialuria) cells by only 13%. Cytidine feeding of sialuria fibroblasts decreased the intracellular free NeuAc content by 47%; this was accompanied by a fourfold increase in CMP-NeuAc, which may be sufficient to feedback inhibit the mutant epimerase and reduce free NeuAc production. Cytoplasmic pH was determined by the pH sensitive fluorescent indicator 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescemn, pentaacetoxymethylester (BCECF/AM) using the H+ equilibration method. The intracellular pH of sialuria fibroblasts, 7.18 ± 0.04, was not found to he significantly different from that of normal cells (7.19 ± 0.08).  相似文献   

20.
尿苷-胞苷激酶作为生物体核苷酸代谢补偿途径中的重要催化剂,可以催化胞苷的磷酸化反应合成5′-胞苷酸(简称胞苷酸),但需要NTP作为磷酸供体。为了提高胞苷酸的生产效率,文中首先使用大肠杆菌分别异源表达来源于嗜热栖热菌Thermus thermophiles HB8的尿苷-胞苷激酶和来源于类球红细菌Rhodobacter sphaeroides的聚磷酸激酶,其中尿苷-胞苷激酶用于催化胞苷和ATP形成胞苷酸,聚磷酸激酶则用于ATP的循环再生。然后,使用D403金属螯合树脂吸附Ni2+形成固定化载体,再利用固定化载体特异性吸附重组酶形成固定化酶。最后,单因素优化实验确定固定化酶的催化反应条件,在30℃、pH 8.0的条件下,以60 mmol/L胞苷和0.5 mmol/L ATP为底物,可实现5批次的高效连续催化反应,胞苷酸平均摩尔得率达到91.2%。上述制备方法反应成本低,产物得率高,酶利用率高,在工业生产中具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号