首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The cold shock protein Bc-Csp from the thermophile Bacillus caldolyticus differs from its mesophilic homolog Bs-CspB from Bacillus subtilis by 15.8 kJ mol(-1) in the Gibbs free energy of denaturation (DeltaG(D)). The two proteins vary in sequence at 12 positions but only two of them, Arg3 and Leu66 of Bc-Csp, which replace Glu3 and Glu66 of Bs-CspB, are responsible for the additional stability of Bc-Csp. These two positions are near the ends of the protein chain, but close to each other in the three-dimensional structure. The Glu3Arg exchange alone changed the stability by more than 11 kJ mol(-1). Here, we elucidated the molecular origins of the stability difference between the two proteins by a mutational analysis. Electrostatic contributions to stability were characterized by measuring the thermodynamic stabilities of many variants as a function of salt concentration. Double and triple mutant analyses indicate that the stabilization by the Glu3Arg exchange originates from three sources. Improved hydrophobic interactions of the aliphatic moiety of Arg3 contribute about 4 kJ mol(-1). Another 4 kJ mol(-1) is gained from the relief of a pairwise electrostatic repulsion between Glu3 and Glu66, as in the mesophilic protein, and 3 kJ mol(-1) originate from a general electrostatic stabilization by the positive charge of Arg3, which is not caused by a pairwise interaction. Mutations of all potential partners for an ion pair within a radius of 10 A around Arg3 had only marginal effects on stability. The Glu3-->Arg3 charge reversal thus optimizes ionic interactions at the protein surface by both local and global effects. However, it cannot convert the coulombic repulsion with another Glu residue into a corresponding attraction. Avoidance of unfavorable coulombic repulsions is probably a much simpler route to thermostability than the creation of stabilizing surface ion pairs, which can form only at the expense of conformational entropy.  相似文献   

2.
Zhou HX  Dong F 《Biophysical journal》2003,84(4):2216-2222
The thermophilic Bacillus caldolyticus cold shock protein (Bc-Csp) differs from the mesophilic Bacillus subtilis cold shock protein B (Bs-CspB) in 11 of the 66 residues. Stability measurements of Schmid and co-workers have implicated contributions of electrostatic interactions to the thermostability. To further elucidate the physical basis of the difference in stability, previously developed theoretical methods that treat electrostatic effects in both the folded and the unfolded states were used in this paper to study the effects of mutations, ionic strength, and temperature. For 27 mutations that narrow the difference in sequence between Bc-Csp and Bs-CspB, calculated changes in unfolding free energy (Delta G) and experimental results have a correlation coefficient of 0.98. Bc-Csp appears to use destabilization of the unfolded state by unfavorable charge-charge interactions as a mechanism for increasing stability. Accounting for the effects of ionic strength and temperature on the electrostatic free energies in both the folded and the unfolded states, explanations for two important experimental observations are presented. The disparate ionic strength dependences of Delta G for Bc-Csp and Bs-CspB were attributed to the difference in the total charges (-2e and -6e, respectively). A main contribution to the much higher unfolding entropy of Bs-CspB was found to come from the less favorable electrostatic interactions in the folded state. These results should provide insight for understanding the thermostability of other thermophilic proteins.  相似文献   

3.
The folding reactions of several proteins are well described as diffusional barrier crossing processes, which suggests that they should be analyzed by Kramers' rate theory rather than by transition state theory. For the cold shock protein Bc-Csp from Bacillus caldolyticus, we measured stability and folding kinetics, as well as solvent viscosity as a function of temperature and denaturant concentration. Our analysis indicates that diffusional folding reactions can be treated by transition state theory, provided that the temperature and denaturant dependence of the solvent viscosity is properly accounted for, either at the level of the measured rate constants or of the calculated activation parameters. After viscosity correction the activation barriers for folding become less enthalpic and more entropic. The transition from an enthalpic to an entropic folding barrier with increasing temperature is, however, apparent in the data before and after this correction. It is a consequence of the negative activation heat capacity of refolding, which is independent of solvent viscosity. Bc-Csp and its mesophilic homolog Bs-CspB from Bacillus subtilis differ strongly in stability but show identical enthalpic and entropic barriers to refolding. The increased stability of Bc-Csp originates from additional enthalpic interactions that are established after passage through the activated state. As a consequence, the activation enthalpy of unfolding is increased relative to Bs-CspB.  相似文献   

4.
The bacterial cold shock proteins are small compact beta-barrel proteins without disulfide bonds, cis-proline residues or tightly bound cofactors. Bc-Csp, the cold shock protein from the thermophile Bacillus caldolyticus shows a twofold increase in the free energy of stabilization relative to its homolog Bs-CspB from the mesophile Bacillus subtilis, although the two proteins differ by only 12 out of 67 amino acid residues. This pair of cold shock proteins thus represents a good system to study the atomic determinants of protein thermostability. Bs-CspB and Bc-Csp both unfold reversibly in cooperative transitions with T(M) values of 49.0 degrees C and 77.3 degrees C, respectively, at pH 7.0. Addition of 0.5 M salt stabilizes Bs-CspB but destabilizes Bc-Csp. To understand these differences at the structural level, the crystal structure of Bc-Csp was determined at 1.17 A resolution and refined to R=12.5% (R(free)=17.9%). The molecular structures of Bc-Csp and Bs-CspB are virtually identical in the central beta-sheet and in the binding region for nucleic acids. Significant differences are found in the distribution of surface charges including a sodium ion binding site present in Bc-Csp, which was not observed in the crystal structure of the Bs-CspB. Electrostatic interactions are overall favorable for Bc-Csp, but unfavorable for Bs-CspB. They provide the major source for the increased thermostability of Bc-Csp. This can be explained based on the atomic-resolution crystal structure of Bc-Csp. It identifies a number of potentially stabilizing ionic interactions including a cation-binding site and reveals significant changes in the electrostatic surface potential.  相似文献   

5.
残基突变是提高蛋白质热稳定性最直接有效的方式。在本文中,我们选取一对冷休克蛋白质作为研究对象,其中一个来自嗜温的Bacillus subtilis(Bs-CspB),另一个来自嗜热的Bacillus caldolyticus(Bc-Csp),这两个蛋白质在序列和结构上具有高度的相似性,但两者的耐热能力却相差很大。我们利用全原子模型计算残基突变前后蛋白质的自由能和氨基酸之间相互作用能的变化,分析残基突变对冷休克蛋白热稳定性的影响。通过对比两个蛋白质对应位置上残基的能量,我们成功鉴别出对Bc-Csp的高热稳定性有突出贡献的残基。我们计算了这些残基突变前后,该残基的静电相互作用和范德华相互作用的变化,以分析该残基对Bc-Csp高热稳定性的主要贡献。同时,我们分析了离子键对蛋白质热稳定性的贡献。我们的计算结果和实验结果吻合得很好,关键在于利用该方法可以详细地说明残基突变影响蛋白质热稳定性的根本原因。本文为研究残基突变对蛋白质热稳定性的影响提供了一种计算思路和方法,并有助于设计具有高耐热能力的蛋白质。  相似文献   

6.
In previous work, we had identified stabilized forms of the cold-shock protein Bs-CspB from Bacillus subtilis in a combinatorial library by an in vitro selection procedure. In this library, the sequence positions 2, 3, 46, 64, 66, and 67 had been randomized, because Bs-CspB differs from the naturally thermostable homolog Bc-Csp from Bacillus caldolyticus, among others, at these six positions. For the most stable selected variant, the midpoint of thermal unfolding (tM) increased by 28.2 deg. C and the Gibbs free energy of unfolding (deltaG(D)) by 19 kJ/mol. Here, we analyzed by site-directed mutagenesis how the selected residues contribute individually to this strong stabilization. Val3 and Val66, which replace Glu3 and Glu66 of wild-type Bs-CspB, each contribute about 7 kJ/mol to stability, the Thr64Arg substitution contributes 4.5 kJ/mol, and 3.2 kJ/mol originate from the Ala46Leu replacement. Gly67 at the carboxy terminus is unimportant for stability, the Arg selected at position 2 is overall slightly destabilizing but improves the coulombic interactions. The best variant differs from Bc-Csp at all six positions; nevertheless, natural and in vitro selection followed similar principles. In both cases, negatively charged residues at the adjacent positions 3 and 66 are avoided, and a positively charged residue is introduced into this area of the protein surface. Its exact location is unimportant. It can be at position 3, as in the thermophilic Bc-Csp, or at positions 2 or 64, as in the most stable selected variant. These positively charged residues contribute to stability not by engaging in pairwise coulombic interactions with a specific carboxyl group, but by generally improving the charge distribution in this particular region of the protein surface. These coulombic effects contribute significantly to the thermostability of the cold-shock proteins. They are only weakly interdependent and best explained by the presence of a flexible ion network at the protein surface. Our results emphasize that surface positions are very good candidates for optimizing protein stability.  相似文献   

7.
Two exposed amino acid residues confer thermostability on a cold shock protein   总被引:14,自引:0,他引:14  
Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol-1 at 70 degrees C). 11.5 kJ mol-1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol-1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.  相似文献   

8.
The bacterial cold shock proteins (Csp) are used by both experimentalists and theoreticians as model systems for analyzing the Coulombic contributions to protein stability. We employ Proside, a method of directed evolution, to identify stabilized variants of Bs-CspB from Bacillus subtilis. Proside links the increased protease resistance of stabilized protein variants to the infectivity of a filamentous phage. Here, three cspB libraries were used for in vitro selections to explore the stabilizing potential of charged amino acids in Bs-CspB. In the first library codons for nine selected surface residues were partially randomized, in the second one random mutations were introduced non-specifically by error-prone PCR, and in the third one the spontaneous mutation rate of the phage in Escherichia coli was used. Stabilizing mutations were found at the surface positions 1, 3, 46, 48, 65, and 66. The contributions of these mutations to stability were characterized by analyzing them individually and in combination. The best combination (M1R, E3K, K65I, and E66L) increased the midpoint of thermal unfolding of Bs-CspB from 53.8 to 85.0 degrees C. The effects of most mutations are strongly context dependent. A good example is provided by the E3R mutation. It is strongly stabilizing (DeltaDeltaGD=11.1kJ mol(-1)) in the wild-type protein, but destabilizing (DeltaDeltaGD=-4.0kJ mol(-1)) in the A46K/S48R/E66L variant. The stabilizations by charge mutations did not correlate well with the corresponding changes in the protein net charge, and they could not be ascribed to the formation of ion pairs. Previous theoretical analyses did not identify the stabilization caused by the mutations at positions 1, 46, and 48. Also, electrostatics calculations based on protein net charge or charge asymmetry did not predict well the stability changes that occur when charged residues in Bs-CspB are mutated. It remains a challenge to model the Coulombic interactions of charged residues in a protein and to determine their contributions to the Gibbs free energy of protein folding.  相似文献   

9.
Thermostable proteins are of prime importance in protein science, but it has remained difficult to develop general strategies for stabilizing a protein. Site-directed mutagenesis based on comparisons with thermophilic homologs is rarely successful because the sequence differences are too numerous and dominated by neutral mutations. Here we used a method of directed evolution to increase the stability of a mesophilic protein, the cold shock protein Bs-CspB from Bacillus subtilis. It differs from its thermophilic counterpart Bc-Csp from Bacillus caldolyticus at 12 surface-exposed positions. To elucidate the stabilizing potential of exposed amino acid residues, six of these variant positions were randomized by saturation mutagenesis, the corresponding library of sequences was inserted into the gene-3-protein of the filamentous phage fd, and stabilized variants were selected by the Proside technique. Proside links the increased protease resistance of stabilized protein variants with the infectivity of the phage. Many strongly stabilized variants of Bs-CspB were identified in two selections, one in the presence of a denaturant and the other at elevated temperature. Several of them are significantly more stable than the naturally thermostable homolog Bc-Csp, and the best variant reaches Tm-Csp (the homolog from the hyperthermophile Thermotoga maritima) in stability. Remarkably, this variant differs from Tm-Csp at five and from Bc-Csp at all six randomized positions. This indicates that proteins can be strongly stabilized by many different sets of surface mutations, and Proside selects them efficiently from large libraries. The course of the selection could be directed by the conditions. In an ionic denaturant non-polar surface interactions were optimized, whereas at elevated temperature variants with improved electrostatics were selected, pointing to two different strategies for stabilization at protein surfaces.  相似文献   

10.
Cold and heat denaturation of the double mutant Arg 3→Glu/Leu 66→Glu of cold shock protein Csp of Bacillus caldolyticus was monitored using 1D 1H NMR spectroscopy in the temperature range from −12°C in supercooled water up to +70°C. The fraction of unfolded protein, f u, was determined as a function of the temperature. The data characterizing the unfolding transitions could be consistently interpreted in the framework of two-state models: cold and heat denaturation temperatures were determined to be −11°C and 39°C, respectively. A joint fit to both cold and heat transition data enabled the accurate spectroscopic determination of the heat capacity difference between native and denatured state, ΔC p of unfolding. The approach described in this letter, or a variant thereof, is generally applicable and promises to be of value for routine studies of protein folding.  相似文献   

11.
12.
The cold shock protein from the hyperthermophile Thermotoga maritima (Tm-Csp) exhibits significantly higher thermostability than its homologue from the thermophile Bacillus caldolyticus (Bc-Csp). Experimental studies have shown that the electrostatic interactions unique to Tm-Csp are responsible for improving its thermostability. In the present work, the favorable charged residues in Tm-Csp were grafted into Bc-Csp by a double point mutation of S48E/N62H, and the impacts of the mutation on the thermostability and unfolding/folding behavior of Bc-Csp were then investigated by using a modified Gō model, in which the electrostatic interactions between charged residues were considered in the model. Our simulation results show that this Tm-Csp-like charged residue mutation can effectively improve the thermostability of Bc-Csp without changing its two-state folding mechanism. Besides that, we also studied the unfolding kinetics and unfolding/folding pathway of the wild-type Bc-Csp and its mutant. It is found that this charged residue mutation obviously enhanced the stability of the C-terminal region of Bc-Csp, which decreases the unfolding rate and changes the unfolding/folding pathway of the protein. Our studies indicate that the thermostability, unfolding kinetics and unfolding/folding pathway of Bc-Csp can be artificially changed by introducing Tm-Csp-like favorable electrostatic interactions into Bc-Csp.
Graphical abstract Tertiary structure of wild-type cold shock protein from the thermophile Bacillus caldolyticus
  相似文献   

13.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein.  相似文献   

14.
15.
16.
17.
The bacterial cold shock proteins (Csp) are widely used as models for the experimental and computational analysis of protein stability. In a previous study, in vitro evolution was employed to identify strongly stabilizing mutations in Bs-CspB from Bacillus subtilis. The best variant found by this approach contained the mutations M1R, E3K and K65I, which raised the midpoint of thermal unfolding of Bs-CspB from 53.8 degrees C to 83.7 degrees C, and increased the Gibbs free energy of stabilization by 20.9 kJ mol(-1). Another selected variant with the two mutations A46K and S48R was stabilized by 11.1 kJ mol(-1). To elucidate the molecular basis of these stabilizations, we determined the crystal structures of these two Bs-CspB variants. The mutated residues are generally well ordered and provide additional stabilizing interactions, such as charge interactions, additional hydrogen bonds and improved side-chain packing. Several mutations improve the electrostatic interactions, either by the removal of unfavorable charges (E3K) or by compensating their destabilizing interactions (A46K, S48R). The stabilizing mutations are clustered at a contiguous surface area of Bs-CspB, which apparently is critically important for the stability of the beta-barrel structure but not well optimized in the wild-type protein.  相似文献   

18.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.  相似文献   

19.
Huang X  Zhou HX 《Biophysical journal》2006,91(7):2451-2463
Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed five-stranded antiparallel beta-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (beta1-beta3), with the C-terminal side, formed by two strands (beta4-beta5). The two proteins were found to follow the same unfolding pathway, but with the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to exposure of the hydrophobic core. Subsequent melting of beta3 and the beta-hairpin formed by the first two strands then resulted in unfolding of the whole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3 with Glu-46, Glu-21, and the C-terminal. These ion pairs were also found to be important for the difference in folding stability between the pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between the pair of proteins.  相似文献   

20.
To test the possibility that long-range interactions might influence the folding and stability of dihydrofolate reductase, a series of single and double mutations at positions 28 and 139 were constructed and their urea-induced unfolding reactions studied by absorbance and circular dichroism spectroscopy. The alpha carbons of the two side chains are separated by 15 A in the native conformation. The replacement of Leu 28 by Arg and of Glu 139 by Gln resulted in additive effects on both kinetic and equilibrium properties of the reversible unfolding transition; no evidence for interaction was obtained. In contrast, the Arg 28/Lys 139 double replacement changed the equilibrium folding model from two state to multistate and showed evidence for interaction in one of the two kinetic phases detected in both unfolding and refolding reactions. The results can be explained in terms of a long-range, repulsive electrostatic interaction between the cationic side chains at these two positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号