首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

2.
Based on our recent observation that Epstein-Barr virus (EBV) is detected in 37% of the tissues of hepatocellular carcinoma, and especially frequently in cases with hepatitis C virus (HCV), the effect of EBV infection on the replication of HCV was investigated. EBV-infected cell clones and their EBV-uninfected counterparts in cell lines MT-2 (a human T-lymphotropic virus type I-infected T-cell line), HepG2 (a hepatoblastoma cell line) and Akata (a Burkitt's lymphoma cell line) were compared in terms of their permissiveness for HCV replication following inoculation of HCV derived from patients who were HCV carriers. The results indicated that EBV-infected cell clones, but not their EBV-uninfected counterparts, promoted HCV replication. EBV-encoded nuclear antigen 1 (EBNA1), which is invariably expressed in EBV-infected cells, supported HCV replication. Deletion analysis of the EBNA1 gene showed good correlation between transactivation activity and the activity supporting HCV replication. The present findings suggest that EBV acts as a helper virus for HCV replication.  相似文献   

3.
Human embryonic stem (hES) cells have the capability of unlimited undifferentiated proliferation, yet maintain the potential to form perhaps any cell type in the body. Based on the high efficiency of the Epstein-Barr virus-based episomal vector in introducing exogenous genes of interest into mammalian cells, we applied this system to hES cells, expecting that this would resolve the problem of poor transfection efficiency existing in current hES cell research. Therefore, the first step was to establish EBNA1-positive hES cells. Using the Fugene 6 transfection reagent, we transfected hES cells with the EBNA1 expression vector and subsequently generated hES cell clones that stably expressed EBNA1 under drug selection. These clones were confirmed to express EBNA1 mRNA by RT-PCR and to express EBNA1 protein by Western blotting. Furthermore, luciferase reporter gene analysis was performed on the EBNA1 clones and revealed that the expressed EBNA1 protein was functional. When the EBNA1-positive cells were injected into severe combined immunodeficient (SCID) mice, they formed teratoma tissues containing all three embryonic germ layers and EBNA1 protein was detected in these teratoma tissues by Western blotting. All the results show that we have successfully created stable EBNAI-hES cells, thus laying a good foundation for further research.  相似文献   

4.
EBNA-5 is one of the Epstein-Barr virus (EBV)-encoded nuclear proteins required for immortalization of human B lymphocytes. In the nuclei of EBV-transformed lymphoblastoid cell lines EBNA-5 is preferentially targetted to distinct nuclear foci. Previously we have shown (W.Q. Jiang, L. Szekely, V. Wendel-Hansen, N. Ringertz, G. Klein, and A. Rosen, Exp. Cell Res. 197:314-318, 1991) that the same foci also contained the retinoblastoma (Rb) protein. Using a similar double immunofluorescence technique, we now show that these foci colocalize with nuclear bodies positive for PML, the promyelocytic leukemia-associated protein. Artificial spreading of the chromatin by exposure to the forces of fluid surface tension disrupts this colocalization gradually, suggesting that the bodies consist of at least two subcomponents. Heat shock or metabolic stress induced by high cell density leads to the release of EBNA-5 from the PML-positive nuclear bodies and induces it to translocate to the nucleoli. In addition to their presence in nuclear bodies, both proteins are occasionally present in nuclear aggregates and doughnut-like structures in which PML is concentrated in an outer shell. Nuclear bodies with prominent PML staining are seen in resting B lymphocytes. This staining pattern does not change upon EBV infection. In freshly infected cells EBNA-5 antigens are first distributed throughout the nucleoplasm. After a few days intensely staining foci develop. These foci coincide with PML-positive nuclear bodies. At a later stage and in established lymphoblastoid cell lines EBNA-5 is almost exclusively present in the PML-positive nuclear foci. The colocalization is restricted to EBV-infected human lymphoblasts. The data presented indicate that the distinct EBNA-5 foci are not newly formed structures but the result of translocation of the viral protein to a specialized domain present already in the nuclei of uninfected cells.  相似文献   

5.
In this paper we describe the posttranslational processing of the p63/LMP (latent membrane protein) encoded by Epstein-Barr virus in transformed B cells. Specifically, we show that after synthesis, free LMP disappeared with a half-life of about 0.5 h. This was caused by the association of LMP with an insoluble complex. All detectable LMP in the plasma membrane was insoluble. This interaction was resistant to nondenaturing detergents but readily dissociated with 8 M urea or by boiling in 0.5% sodium dodecyl sulfate, suggesting that LMP may be associated with cytoskeletal elements. Most of the Nonidet P-40-insoluble LMP was phosphorylated (ppLMP) primarily on serine but also on threonine residues. No phosphotyrosine was detected. Furthermore, greater than 90% of the ppLMP resided in the Nonidet P-40-insoluble fraction, suggesting a strong correlation between complexing and phosphorylation. Additionally, ppLMP was found to be associated with a 53,000-molecular-weight phosphoprotein (pp53) of unknown origin. Finally, LMP turned over extremely rapidly, with a half-life of about 2 h. Taken together, these properties suggest that although LMP falls broadly within the category of phosphorylated, cytoskeleton-associated oncoproteins, it is nevertheless clearly different from any previously described member of this family.  相似文献   

6.
The BamHI Nhet fragment of the B958 strain of Epstein-Barr virus (EBV) encodes a membrane protein (BNLF-1) that is present in cells transformed by EBV. We made a hybrid protein in which a polypeptide sequence from the carboxyl-terminal part of BNLF-1 is fused to Escherichia coli beta-galactosidase. This hybrid protein was used to immunize rabbits, and the resulting antiserum was purified by immunoaffinity chromatography. The antiserum was able to immunoprecipitate BNLF-1 from cell lysates. We found that BNLF-1 is phosphorylated at serines in EBV genome-positive B-cell lines. Pulse-chase analyses with [35S]methionine indicated that BNLF-1 is turned over in lymphoblasts with a half-life of approximately 5 h. Protein immunoblots of EBV genome-positive B-cell lines revealed both a 62,000-molecular-mass band corresponding to BNLF-1 and a myriad of lower-molecular-mass bands. We postulate that these lower-molecular-mass bands are degradation products resulting from the turnover of BNLF-1 in cells. The BNLF-1 gene was expressed in COS cells, and the protein was both phosphorylated and turned over in these cells.  相似文献   

7.
8.
9.
We identified an Epstein-Barr virus (EBV) gene product which functions in transient-expression assays as a nonspecific trans activator. In Vero cells, cotransfection of the BglII J DNA fragment of EBV together with recombinant constructs containing the bacterial chloramphenicol acetyltransferase (CAT) gene gave up to a 100-fold increased expression of CAT activity over that in cells transfected with the recombinant CAT constructs alone. The BglII J fragment acted promiscuously, in that increased CAT synthesis was observed regardless of whether the promoter sequences driving the CAT gene were of EBV, simian virus 40, adenovirus, or herpes simplex virus origin. Cleavage of cloned BglII-J plasmid DNA before transfection revealed that activation was dependent upon the presence of an intact BMLF1 open reading frame. This was confirmed with subclones of BglII-J and with hybrid promoter-open reading frame constructs. This region of the genome is also present in the rearranged P3HR-1-defective DNA species, and defective DNA clones containing these sequences produced a similar activation of CAT expression in cotransfection experiments. The heterogeneous 45-60-kilodalton polypeptide product of BMLF1 may play an important regulatory role in expression of lytic-cycle proteins in EBV-infected lymphocytes.  相似文献   

10.
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation.  相似文献   

11.
Nucleolar protein p40/EBP2 is a proliferation-associated antigen that interacts with Epstein-Barr virus nuclear antigen 1 (EBNA1) to maintain the Epstein-Barr virus (EBV) episomes. The yeast p40/EBP2 functions in the processing of 27S-A into 27S-B ribosomal RNA. The present study reports high evolutionary conservation of the cDNA-derived amino acid sequences of p40/EBP2 from frog, chicken, pig, rat, mouse, bovine, and human. p40/EBP2 is ubiquitously expressed in human tissues. It is highly expressed in myelogenous leukemia K-562 compared to other cell lines tested. The human p40/EBP2 gene is located in chromosome 1 with nine exons and eight introns. The minimal promoter region resides 300 nucleotides upstream of a putative ATG initiation codon preceded by a pyrimidine-rich region. These two regions contain eight Sp1 and four c-Ets-1 putative binding sites. Analysis of the p40/EBP2 gene and its promoter region will facilitate studies on the regulation of its expression in EBV-infected and noninfected cells.  相似文献   

12.
13.
A monoclonal antibody (aRB1C1) raised against an Rb fusion protein detects a limited number (4-10) of relatively large intranuclear foci in an EBV-immortalized cord blood cell line (IB4). These domains also bind an anti-EBNA-5 monoclonal antibody. The Rb antibody reactive sites also co-localize with the SV40 T antigen in transformed monkey cells (COS). The nuclear structures stained by aRB1C1 and EBNA-5 antibodies are distinct from the structures detected with antibodies against centromeric proteins and certain snRNP epitopes. EBNA-5/Rb-positive domains do not selectively react with antibodies against the La antigen known to associate with the small EBV-encoded nuclear RNA species designated as the EBERs.  相似文献   

14.
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5' or 3' end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses.  相似文献   

15.
The protein kinase (PK) encoded by the Epstein-Barr Virus (EBV) BGLF4 gene is the only EBV protein kinase. The expression pattern of EBV PK during the reactivation of the viral lytic cycle and the subcellular localization of the protein were analyzed with a polyclonal antiserum raised against a peptide corresponding to the N terminus of EBV PK. Based on previously published data (E. Gershburg and J. S. Pagano, J. Virol. 76:998-1003, 2002) and the expression pattern described here, we conclude that EBV PK is an early protein that requires viral-DNA replication for maximum expression. By biochemical fractionation, the protein could be detected mainly in the nuclear fraction 4 h after viral reactivation in Akata cells. Nuclear localization could be visualized by indirect immunofluorescence in HeLa cells transiently expressing EBV BGLF4 in the absence of other viral products. Transient expression of 3'-terminal deletion mutants of EBV BGLF4 resulted in cytoplasmic localization, confirming the presence of a nuclear localization site in the C-terminal region of the protein. In contrast to the wild-type EBV PK, all of the mutants were unable to hyperphosphorylate EA-D during coexpression or to phosphorylate ganciclovir, as measured by an in-cell activity assay. Thus, the results demonstrate that the nuclear localization, as well as the kinase activity, of BGFL4 is dependent on an intact C-terminal region.  相似文献   

16.
Sequence variation in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) oncogene structure may affect antigen-presenting cell (APC) function of infected B cells and immune escape by EBV-specific T cells and thus contribute to the development of malignancy. Normal B cell-associated LMP1 (B-LMP1) upregulates B cell APC function through activation of the necrosis factor (NF)-kappaB subunit, RelB. We examined the ability of B-LMP1 and a nasopharyngeal carcinoma-associated LMP1 (NPC-LMP1) to modulate B cell APC function and T-cell responses. B lymphoma cells transfected with NPC-LMP1 stimulated resting T cells in mixed lymphocyte reaction less efficiently than B-LMP1 transfectants. Unexpectedly, antigen presentation to CD4(+) T helper cells was reduced owing to potentiation of regulatory T-cell function by NPC-LMP1 transfectants, which produce increased levels of interleukin-10, rendering CD4(+) T cells hyporesponsive. Thus, after primary EBV infection, T cells may escape activation by NPC-LMP1. These observations have important implications for the establishment of EBV-associated malignancy in the context of infection with tumour-associated EBV LMP1 variants.  相似文献   

17.
Latent Epstein–Barr virus (EBV) genomes are maintained in human cells as low copy number episomes that are thought to be partitioned by attachment to the cellular mitotic chromosomes through the viral EBNA1 protein. We have identified a human protein, EBP2, which interacts with the EBNA1 sequences that govern EBV partitioning. Here we show that, in mitosis, EBP2 localizes to the condensed cellular chromosomes producing a staining pattern that is indistinguishable from that of EBNA1. The localization of EBNA1 proteins with mutations in the EBP2 binding region was also examined. An EBNA1 mutant (Δ325–376) disrupted for EBP2 binding and segregation function was nuclear but failed to attach to the cellular chromosomes in mitosis. Our results indicate that amino acids 325–376 mediate the binding of EBNA1 to mitotic chromosomes and strongly suggest that EBNA1 mediates EBV segregation by attaching to EBP2 on the cellular mitotic chromosomes.  相似文献   

18.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1.   总被引:25,自引:18,他引:7  
  相似文献   

19.
《Research in virology》1990,141(1):17-30
We have investigated the effect of Epstein-Barr virus nuclear antigen 1 (EBNA-1), a nuclear protein encoded by EBV, on herpes simplex virus type 1 (HSV-1) infection either in cells constitutively expressing EBNA-1 or in transient expression assays. Rat-1 cells and rat embryo fibroblasts (REF) immortalized by c-myc or E1A were transfected with a specific EBV DNA fragment coding for EBNA-1. Cloned cell lines which constitutively expressed this antigen were infected with HSV-1. Our results indicate that in EBNA-1-expressing cells, virus growth was higher than in control cells for different virus strains or rodent cell lines. This increase was maximal when cells were infected at low multiplicity, as determined by virus growth, and correlated with the stimulation of viral DNA synthesis. REF + c-myc and Vero cells were contransfected by an EBNA-1 expression vector driven by Moloney murine leukaemia virus LTR and HSV-1 immediate-early (α0) or early thymidine kinase upstream promoter regulatory regions linked to chloramphenicol acetyltransferase (CAT) coding sequences as effectors. In both cell lines, stimulation of CAT expression by EBNA-1 was observed only with the immediate-early promoter. These results suggest that EBNA-1 can transactivate immediate-early HSV-1 expression.  相似文献   

20.
We have constructed a set of nonsense mutants in the EBNA 1 gene of Epstein-Barr virus by inserting a synthetic oligonucleotide, which has translational termination codons in all three reading frames, at various positions in a cloned copy of the EBNA 1 gene. The EBNA 1 proteins encoded by these mutants and three deletion mutants were analyzed using several functional assays. It was determined that there are two separable phosphorylation domains in the carboxy half of the molecule. The carboxy half of the molecule was also found to contain a region between the unique Sac I and Sac II sites that is required for transactivation of the EBNA 1-specific enhancer element found within ori P. The mutants also served to identify a 248 bp region that affects the pattern of intranuclear localization of the protein. Correlations between the functional domains established by these studies and other properties of EBNA 1 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号