首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3, a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation.  相似文献   

2.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

3.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

4.
The distribution of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA in the rat brain is reported using oligonucleotides based on a cDNA clone sequence that encodes rat brain InsP3 3-kinase and the in situ hybridization technique. Moderate levels were found in CA2-4 pyramidal neurons, in the cortex, and in the striatum. The cerebellar granule cells, thalamus, hypothalamus, brainstem, spinal cord, and white matter tracts were almost negative. The levels of InsP3 3-kinase mRNA were highest in the hippocampal CA1 pyramidal neurons, granule cells of the dentate gyrus, and cerebellar Purkinje cells. These results contrast with the lower concentration of the InsP3 receptor already reported in the hippocampus versus the Purkinje cells and suggest a special role for inositol 1,3,4,5-tetrakisphosphate in Ammon's horn.  相似文献   

5.
Abstract: The extracellular concentration of inositol 1,4,5-trisphosphate (IP3) has been monitored in the ventral hippocampus of the anesthetized rat by using a microdialysis technique coupled to a radioreceptor assay. Three hours after the implantation of the cannula, basal extracellular concentration of IP3 (corrected for a 9% recovery) was 71 n M (0.39 pmol/60-µl fraction) and remained stable for at least 5 h. Local infusion of carbachol for 60 min caused a significant concentration-related increase in extracellular IP3 levels (0, 24, and 57% at 1, 50, and 100 µ M , respectively). Acetylcholine (100 µ M ) and muscarine (100 µ M ) increased IP3 outflow by 40 and 42%, respectively. The effect of carbachol was fully prevented by coinfusion of 10 µ M pirenzepine and reduced by 1 µ M tetrodotoxin indicating that the carbachol response is mediated by neuronal muscarinic receptors. These data demonstrate the feasibility of using microdialysis and a radioreceptor assay to measure IP3 in the extracellular space. This approach could prove useful for the study of the in vivo operation of muscarinic and, by extension, a number of receptors coupled to phosphoinositide turnover.  相似文献   

6.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

7.
Muscarinic receptor stimulation or depolarization with elevated extracellular K+ induced rapid and sustained increases in mass accumulations of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] in cerebral cortex slices. Synergistic but transient responses of both inositol polyphosphate second messengers were observed when slices were stimulated with carbachol under depolarizing conditions; this synergy was observed as an increase in the maximal responsiveness, with no significant change in EC50 values for carbachol. Omission of buffer Ca2+ ([Ca2+]e 10-20 microM) reduced basal Ins(1,4,5)P3 and Ins(1,3,4,5)P4 concentrations; the relative stimulatory effects of muscarinic receptor stimulation were maintained, but the effects of depolarization were markedly attenuated under these conditions. A component of the response to depolarization appeared to be indirectly mediated by the release of acetylcholine, because the K(+)-evoked increase in Ins(1,3,4,5)P4 was enhanced by the cholinesterase inhibitor physostigmine, and was partially attenuated by atropine. An additive suppression by nitrendipine suggests that entry of Ca2+ through L-type Ca2+ channels may serve to accelerate phosphorylation of Ins(1,4,5)P3 by 3-kinase. Norepinephrine did not significantly increase Ins(1,4,5)P3 or Ins(1,3,4,5)P4 accumulation; however, in the presence of depolarizing K+, norepinephrine caused a dramatic increase in Ins(1,3,4,5)P4 mass accumulation. In contrast, the excitatory amino acid quisqualate caused significant increases in the mass accumulations of both inositol polyphosphates measured, with no further increase being observed under depolarizing conditions. The results are discussed with respect to the interactive effects of agonist and depolarization stimuli on inositol polyphosphate accumulation which might more accurately reflect the conditions pertaining in vivo.  相似文献   

8.
Abstract: An alteration in signal transduction systems in Alzheimer's disease (AD) would likely be of pathophysiological significance, because these processes control normal brain functions. Previously, a diminished β-adrenergic-mediated cyclic AMP response was found in cultured fibroblasts from AD patients. Because cross-talk between the phosphoinositide and cyclic AMP pathways exists, the phosphoinositide cascade was studied under conditions that were similar to those for studying the cyclic AMP response. Cells from AD patients and age-matched controls responded to bradykinin (BK) and released inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in a time- and dose-dependent manner. The level of Ins(1,4,5)P3 increased rapidly and transiently in response to BK, peaked at 5 s, but still remained 116–132% above the basal level by 30 s. Although the temporal patterns were similar in both groups, the Ins(1,4,5)P3 concentrations in AD fibroblasts were 73 and 89% above levels in the age-matched controls at 5 and 10 s, respectively. Prostaglandin E1 also increased Ins(1,4,5)P3 formation, but this response was not different between the two groups. Although K D (affinity) values for the BK receptor were similar in both control and AD cells, the number of BK receptors ( B max) was significantly elevated in AD fibroblasts (186.8 ± 0.8 fmol/mg of protein) as compared with control fibroblasts (57.2 ± 15.3 fmol/mg of protein). These results indicate that the elevated Ins(1,4,5)P3 production in response to BK in AD fibroblasts is positively correlated with an increase in the receptor numbers.  相似文献   

9.
Abstract: We investigated the expression of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA after a single electroconvulsive shock (ECS) with in situ hybridization histochemistry in rat brain. At 6 h after ECS, the expression was markedly decreased in the dentate gyrus, and the decrease was maintained until 9 h with a slight recovery. The InsP3 3-kinase mRNA content returned to basal levels after 12 h. We could not detect any apparent changes in the expression of InsP3 3-kinase mRNA in the CA1–CA3 areas of hippocampus, the striatum, and the cerebral cortex at any time point examined. In the temporal pattern, the reduction of the expression in the dentate gyrus was preceded by the induction of c- fos after ECS. These observations suggest that the InsP3 3-kinase might be one of the genes whose expression can be altered by ECS.  相似文献   

10.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

11.
Abstract: The neuronal effects of the metabotropic glutamate receptor agonist (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid have been studied in cultured rat cerebellar granule cells, and compared with those of the endogenous excitotoxin glutamate, and the dietary excitotoxin β- N -methylamino- l -alanine. Glutamate, β- N -methylamino- l -alanine, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid all caused concentration-dependent cerebellar granule cell death over a 24-h exposure period. The metabotropic antagonist ( RS )-α-methyl-4-carboxyphenylglycine reduced glutamate-, β- N -methylamino- l -alanine-, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death by 50, 37, and 90%, respectively. (1 S ,3 R )-Aminocyclopentane-1,3-dicarboxylic acid-induced death was unaffected by the group I antagonist ( RS )-1-aminoindan-1,5-dicarboxylic acid, increased by the group II antagonist ethylglutamic acid, and markedly decreased by the group III antagonist ( RS )-α-methylserine- O -phosphate. Neither (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid nor the group I agonist ( RS )-3,5-dihydroxyphenylglycine caused an increase in intracellular free calcium levels. The group III agonist l -(+)-2-amino-4-phosphonobutyric acid also induced concentration-dependent cerebellar granule cell death, and so it was suggested that the group III metabotropic glutamate receptors were responsible for (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death. Blocking these receptors with ( RS )-α-methylserine- O -phosphate also prevented a proportion of glutamate- and β- N -methylamino- l -alanine-induced death.  相似文献   

12.
Abstract: Stimulation of muscarinic receptors expressed in SH-SY5Y human neuroblastoma cells resulted in a complex profile of inositol 1,4,5-trisphosphate (InsP3) accumulation, with a dramatic increase (six- to eightfold) over the first 10 s (the “peak” phase) and subsequently, from ~60 s onward, maintained at a lower but sustained level (the “plateau” phase). Chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ channels with Ni2+ showed that the plateau phase was dependent upon Ca2+ entry. Furthermore, use of thapsigargin and EGTA to discharge and sequester Ca2+ from intracellular stores revealed that Ca2+ from this source was capable of supporting the peak phase of the InsP3 response. Carbachol-stimulated phosphoinositidase C activity in permeabilized SH-SY5Y cells was also shown to be highly dependent on free Ca2+ concentration (20–100 nM) and suggests that under normal conditions, InsP3 formation is enhanced by increases in cytosolic free Ca2+ concentration that accompany muscarinic receptor activation. Measurement of carbachol-stimulated total inositol phosphate accumulation in the presence of Li+ indicated that the initial rate of phosphoinositide hydrolysis (from 0 to 30 s) was about fivefold greater than that from 30 to 300 s. This rapid but partial desensitization of receptor-mediated phosphoinositide hydrolysis provides strong evidence for the mechanism underlying the changes in InsP3 accumulation over this time. Because very similar data were obtained in Chinese hamster ovary cells transfected with human m3 receptor cDNA, we suggest that although increases in cytosolic free Ca2+ concentration amplify InsP3 formation during stimulation of m3 muscarinic receptors, the primary factor that governs the profile of InsP3 accumulation is rapid, but partial, desensitization. Such desensitization does not appear to be mediated by changes in cytosolic Ca2+ or protein kinase C activity.  相似文献   

13.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

14.
15.
Abstract: We have examined the mechanisms that underlie Ca2+ wave propagation in cultured cortical astrocytes. Norepinephrine evoked Ca2+ waves in astrocytes that began at discrete initiation loci and propagated throughout the cell by regenerative amplification at a number of cellular sites, as shown by very high Ca2+ release rates at these regions. We have hypothesized previously that domains displaying elevated Ca2+ release kinetics in astrocytes may correspond to sites of high inositol 1,4,5-trisphosphate receptor (InsP3R) density. To examine this possibility, we compared the distribution pattern of endoplasmic reticulum (ER) and InsP3Rs with Ca2+ release kinetics in subcellular regions during propagation of norepinephrine-evoked waves. 3,3'-Dihexyloxacarbocyanine iodide staining revealed that the ER in astrocytes exists as a meshwork of membranes extending throughout the cells, including fine processes. A specific antibody directed against type 2 InsP3Rs (InsP3R2) detected a 260-kDa band in western blotting of astrocyte membranes. Immunocytochemistry using this antibody stained the entire ER system in a punctate, variegated manner. When Ca2+ responses and InsP3R2 immunofluorescence were compared in the same cell, domains of elevated Ca2+ response kinetics (high amplitude and rapid rate of rise) showed significant positive correlation with high local intensity of InsP3R2 staining. It appears, therefore, that specializations in the ER responsible for discrete local Ca2+ release sites that support regenerative wave propagation include increased levels of InsP3R2 expression.  相似文献   

16.
Abstract: Mild depolarisation (20 m M KCI) synergistically enhances the ability of a muscarinic agonist to activate phosphoinositide turnover and to elevate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in cerebellar granule cells in primary culture. The effects of lithium on this intense stimulation of phosphoinositide turnover was studied. Lithium causes depletion of cytoplasmic inositol and phosphoinositides, which results in the inhibition of phosphoinositide turnover within 15 min and the return of Ins(1,4,5)P3 to basal levels at this time. This inhibition could not be reversed by culturing and preincubating cerebellar granule cells in concentrations of inositol similar to those detected in the CSF. Inositol concentrations substantially in excess of those in the CSF not only reversed the effects of lithium on stimulated Ins(1,4,5)P3 levels, but significantly enhanced this level in comparison with stimulation in the absence of lithium. sn -1,2-Diacylglycerol elevation during stimulated phosphoinositide turnover was also disrupted by lithium, but in contrast to Ins(1,4,5)3, the presence of lithium resulted in a transient enhancement of the elevation evoked by carbachol plus mild KCI depolarisation, which was reversed by 500 µ M inositol, but not by 200 µ M inositol. The implications of these phenomena in relation to the mechanism of action of lithium in the treatment of manic depression are discussed.  相似文献   

17.
Expression of inositol 1,4,5-trisphosphate (InsP3) receptor subtypes was determined in mouse brain using oligonucleotide-specific in situ hybridization. All subtypes, except one that deletes 120 bp from the full-length InsP3 receptor cDNA, were expressed in cerebellar Purkinje cells. In hippocampus, various subtypes showed distinct expression patterns. These results suggest that regionally selective expression of InsP3 receptor subtypes may result in the generation of functionally distinct channels.  相似文献   

18.
Abstract: The regional distribution of inositol 1,4,5-trisphosphate (InsP3), inositol 1,3,4,5-tetrakisphosphate (InsP4), and ryanodine binding sites has been characterised and compared in the rat brain using radioligand binding assays. Cortical [3H]InsP3 binding indicated similar positional and stereospecificity as observed in other tissues, with 100-fold selectivity for lnsP3 over InsP4. Similarly, high-affinity [32P]InsP4 binding also showed a high degree of positional specificity, with a 1,000-fold selectivity for InsP4 over InsP3. Initial characterisation of [3H]ryanodine binding to cortical membranes demonstrated that specific binding was highly dependent on high salt and micromolar Ca2+ concentrations and inhibited by Ca2+ levels of >1 mM. [3H]-Ryanodine binding was also enhanced by β,γ-methylene-adenosine 5′-trisphosphate and caffeine and inhibited by magnesium and ruthenium red (Ki= 0.81 μM). However, dantrolene (300 μM) was ineffective on the binding. Therefore, although the results indicate a greater similarity to the binding properties of the Ca2+-induced Ca2+ release channel isoform present in skeletal, rather than cardiac, muscle, it does not appear to be identical. Detailed binding analysis of ryanodine and polyphosphate sites, with the exception of ruthenium red, indicated no interaction between binding sites. Ruthenium red markedly enhanced the binding of both [3H]InsP3 and [32P]InsP4, an effect most probably due to nonspecific complex formation. Regional binding of InP3, InsP4, and ryanodine in the rat brain was of similar affinity for each ligand in each area, but the density profile for each ligand was clearly different. The highest density of InsP3 sites was in the cerebellum, whereas the highest density of ryanodine sites was in the hippocampus. High-affinity InsP4 sites showed less regional diversity, with highest densities in the cerebellum, cortex, and hippocampus. However, in each area studied the density of sites followed the order InsP3 > InsP4 > ryanodine.  相似文献   

19.
We previously reported that lithium, in the presence of acetylcholine, increased accumulations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in brain cortex slices from the guinea pig, rabbit, rat, and mouse. In the mouse and rat, the Li(+)-induced increases required supplementation of the medium with inositol. This probably relates to the following facts: (a) Brain cortices of the mouse and rat contain in vivo concentrations of inositol half of that of the guinea pig. (b) Incubated rat brain cortex slices are depleted of inositol by 80%. (c) The slices require 10 mM inositol supplementation to restore in vivo concentrations. We now show that in monkey brain cortex slices, therapeutic concentrations of Li+ increase accumulation of inositol 1,4,5-trisphosphate. The inositol 1,3,4,5-tetrakisphosphate level is not increased. Neither inositol nor an agonist is required. The same effects are seen whether inositol 1,4,5-trisphosphate is quantified by the [3H]inositol prelabeling technique or by mass assay, although mass includes a pool of inositol 1,4,5-trisphosphate that is metabolically inactive. Thus, in a therapeutically relevant model for humans, Li+ increases inositol 1,4,5-trisphosphate levels in brain cortex slices, as was previously seen in lower mammals at non-rate-limiting concentrations of inositol.  相似文献   

20.
The effect of inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] and caffeine on Ca2+ release from digitonin-permeabilised bovine adrenal chromaffin cells was examined by using the Ca2+ indicator fura-2 to monitor [Ca2+]. Permeabilised cells accumulated Ca2+ in the presence of ATP and addition of either Ins(1,4,5)P3 or caffeine released 17% or 40-50%, respectively, of the accumulated Ca2+, indicated by sustained rises in [Ca2+] in the cell suspension. Prior addition of Ins(1,4,5)P3 had no effect on the magnitude of the response to a subsequent addition of caffeine. The response to Ins(1,4,5)P3 was prevented by prior addition of caffeine or CaCl2, indicating that the Ins(1,4,5)P3 response was blocked by elevated [Ca2+]. The responses were essentially identical in the presence of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, indicating that the Ca2+ release was not from mitochondria or secretory granules and that a proton gradient was not required for Ca2+ accumulation into the Ins(1,4,5)P3- or caffeine-sensitive stores. Ca2+ release from the caffeine-sensitive store was selectively blocked by ryanodine. The Ins(1,4,5)P3-sensitive store was emptied by thapsigargin, which had no effect on caffeine responses. These data suggest that permeabilised chromaffin cells possess two distinct nonoverlapping Ca2+ stores sensitive to either Ins(1,4,5)P3 or caffeine and support previous conclusions that these stores possess different Ca2(+)-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号