首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.  相似文献   

2.
We have reported that GM-CSF treatment of NOD mice suppressed diabetes by increasing the number of tolerogenic dendritic cells (tDCs) and Tregs in the periphery. Here, we have investigated whether GM-CSF acted on NOD bone marrow DCs precursors to skew their differentiation to tDCs. DCs were generated from the bone marrow of GM-CSF-treated (GM.BMDCs) and PBS-treated (PBS.BMDCs) NOD mice and were assessed for their ability to acquire tolerogenic properties. Upon LPS stimulation, GM.BMDCs became fully mature, expressed high levels of PD-L1 and produced more IL-10 and less IL-12p70 and IFN-γ than PBS.BMDCs. In addition, LPS-stimulated GM.BMDCs possessed a reduced capacity to activate diabetogenic CD8+ T cells in a PD-1/PD-L1-dependent manner. A single injection of LPS-stimulated GM.BMDCs in NOD mice resulted in long-term protection from diabetes, in contrast to LPS-stimulated PBS.BMDCs. Our results showed that GM-CSF-treatment acted on bone marrow precursors to skew their differentiation into tDCs that protected NOD mice against diabetes.  相似文献   

3.
《Tissue & cell》2016,48(6):588-595
In the present study, we examined the morphology of cilia and expression of the dynein intermediate chain 2 (DNAI2) in the oviduct of non-obese diabetic (NOD) mice. Results obtained with immunohistochemistry showed that DNAI2 expression was reduced in oviducts of diabetic NOD (dNOD) mice, as compared to that observed in the normoglycemic NOD (cNOD) group, especially in the acyclic dNOD mice. Oviductal cilia of dNOD mice appeared to be reduced in number. Results obtained with Western blot analysis revealed that the expression of DNAI2 protein was significantly less in oviducts of dNOD mice as compared to that of cNOD mice corroborating the results obtained with immunohistochemistry. Electron microscopic examination and quantitative imaging of thin sections of Epon-embedded oviducts of both dNOD and cNOD mice confirmed the reduction of the number of cilia in the oviduct of the dNOD group which also displayed aberrant axonemal ultrastructure, including disorganization of the axoneme and alteration of microtubule doublets into singlets as well as disruption of the plasma membrane in many cilia. Taken together, the present findings suggest that structural alterations of oviductal cilia in female diabetic NOD mice might be detrimental to the normal function of these particular cell structures in gamete transport.  相似文献   

4.
Several investigators, including ourselves, have reported lower yield of GM-CSF bone marrow-derived dendritic cells (DC) with altered MHC class II and co-stimulatory molecules expression in the non-obese diabetic (NOD) mice. However, whether this defect was intrinsic to the DC lineage and/or related to abnormal expansion of other cell types responding to GM-CSF remained an opened issue. We performed phenotypical and morphological analysis of cells from GM-CSF-supplemented-bone marrow-cultures and of freshly isolated bone marrow and blood cells from unmanipulated prediabetic NOD mice. The results show a heretofore undescribed bias towards generation of granulocytes in NOD mice, concomitant with quantitative and qualitative alterations of the DC lineage in both the bone marrow and the blood of this mouse strain. We propose that increased generation of granulocytes in NOD mice might contribute to autoimmunity. First, high numbers of granulocytes per se might favor inflammatory environment. Second, granulocytes, by interfering with DC development, might favor unbalanced antigen presenting cell function leading to T cell autoimmunity.  相似文献   

5.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   

6.
Invariant natural killer T (iNKT) cells can perform multiple functions characteristic of both innate and acquired immunity. Activation of iNKT cells in vivo by repeated α-GalCer injections can induce immune tolerance, but the mechanisms responsible for such immunoregulation remain unclear. We prepared α-GalCer-liposomes, a single injection of which into mice resulted in the expansion of splenic CD11clowCD45RBhigh cells, which consists of two populations, CD180+ and CD49b+. Expansion of these cells was not observed in α-GalCer-liposome-treated mice deficient in IL-10 or iNKT cells. MHC and co-stimulatory molecules were down-regulated in CD11clowCD180+ cells compared with conventional dendritic cells (cDCs), suggesting that the former possess characteristics of immature DCs. Meanwhile, the CD11clowCD49b+ cells expressed IL-10 and Ctla4, and possessed greater lytic activity than resting NK cells. These observations suggest that both immature DCs (CD11clowCD180+) and cytotoxic cells (CD11clowCD49b+) might be expanded by α-GalCer-activated iNKT cells and could therefore be involved in immune tolerance.  相似文献   

7.
In type 1 diabetes mellitus (T1DM), the processes which control the recruitment of immune cells into pancreatic islets are poorly defined. Complex interactions involving adhesion molecules, chemokines and chemokine receptors may facilitate this process. The chemokine, monocyte chemoattractant protein-1 (MCP-1), previously shown to be important in leukocyte trafficking in other disease systems, may be a key participant in the early influx of blood-borne immune cells into islets during T1DM. In the non-obese diabetic (NOD) mouse, the expression of MCP-1 protein has not been demonstrated. We employed dual-label immunohistochemistry to examine the intra-islet expression, distribution and cellular source of MCP-1 in the NOD mouse following cyclophosphamide administration. NOD mice were treated with cyclophosphamide at day 72–73 and MCP-1 expression studied at days 0, 4, 7, 11 and 14 after treatment and comparisons were made between age-matched NOD mice treated with diluent and non-diabetes-prone CD-1 mice. Pancreatic expression of MCP-1 was also examined in NOD mice at various stages of spontaneous diabetes. In the cyclophosphamide group at day 0, MCP-1 immunolabelling was present in selective peri-islet macrophages but declined at day 4. It increased slightly at day 7 but was more marked from day 11, irrespective of diabetes development. The pattern of MCP-1 expression in macrophages was different over time in both the cyclophosphamide and control groups. In the cyclophosphamide group, there was a change over time with an increase at day 11. In the control group, there was little evidence of change over time. There was no significant difference in the mean percentage of MCP-1 positive macrophages between the cyclophosphamide-treated diabetic and non-diabetic mice. During spontaneous diabetes in the NOD mouse, only a few peri-islet MCP-1 cells appeared at day 45. These became more numerous from day 65 but were absent at diabetes onset. We speculate that a proportion of early islet-infiltrating macrophages which express MCP-1 may attract additional lymphocytes and macrophages into the early inflamed islets and intensify the process of insulitis.  相似文献   

8.
The histologic hallmark of the development of type 1 diabetes (T1D) is insulitis, characterized by leukocytic infiltration of the pancreatic islets. The molecules controlling the early influx of leukocytes into the islets are poorly understood. Tumor necrosis factor α (TNFα)-stimulated gene 6 (TSG-6) is involved in inflammation, extracellular matrix formation, cell migration, and development. In the present study, we examined the expression and cellular localization of TSG-6 protein in islets of female non-obese diabetic (NOD) mice using frozen section immunofluorescence staining. Pancreata from nondiabetic (8 and 25 weeks old), prediabetic (230–280 mg/dl blood glucose) and diabetic (>300 mg/dl blood glucose) NOD mice were stained for TSG-6, insulin, CD3, CD11c, Mac3 and CD31. TSG-6 protein was detected in 67% of islets of prediabetic mice, 27% of islets of 25-week old nondiabetic mice, and less than 7% of islets of diabetic mice and 8-week old nondiabetic mice. Lastly, islet-derived TSG-6 protein was localized to the infiltrating CD3 and CD11c positive leukocytes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
To assess the immunomodulatory activity of the HIV Tat transduction peptide for enhancement of suppression of Type 1 autoimmune diabetes, the 11 amino acid HIV-1 Tat transduction peptide was genetically linked to the major islet autoantigens proinsulin (INS) and glutamic acid decarboxylase (GAD). The Tat-autoantigen fusion proteins were synthesized in Escherichia coli and characterized by acrylamide gel separation and immunoblot analysis. Histological examination of pancreatic islets isolated from juvenile NOD mice inoculated orally with the Tat-autoantigen conjugates revealed a significant reduction in islet inflammation (insulitis) in comparison with islets from unimmunized mice. Increased serum IgG1 antibody isotype titers detected in Tat-autoantigen inoculated mice suggest that the transduction peptide-autoantigen fusion proteins stimulate Th2 lymphocyte mediated bystander suppression. The reduction of islet insulitis observed in Tat-autoantigen inoculated mice suggests that the adjuvant effect of the Tat transduction peptide resides in Tat enhanced delivery of linked autoantigens through enterocytes to lymphocytes in the gut-associated lymphoid tissues.  相似文献   

10.
Novak J  Lehuen A 《Cytokine》2011,53(3):263-270
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.  相似文献   

11.
Hepatic ischemia/reperfusion injury (IRI) is tissue damage resulting from return of the blood supply to the tissue after a period of ischemia or lack of oxygen. Much of the morbidity associated with liver transplantation and major hepatic resections is, in part, due to IRI. Both innate immunity and autophagy play important roles in hepatic IRI. With regard to innate immunity, one factor that plays a key role is NOD1, an intracellular pattern recognition receptor. NOD1 has recently been shown to be associated with autophagy, but the mechanisms involved with this process remain obscure. This relationship between NOD1 and autophagy prompted us to examine the role and potential mechanisms of NOD1 in regulating autophagy as related to hepatic IRI. We found that NOD1 was upregulated during hepatic IRI and was associated with an activation of the autophagic signaling pathway. Moreover, levels of Atg5, a critical protein associated with autophagy, were decreased when NOD1 was inhibited by NOD1 small interfering RNA. We conclude that NOD1 appears to exert a pivotal role in hepatic IRI by activating autophagy to aggravate hepatic IRI, and Atg5 was required for this process. The identification of this novel pathway, that links expression levels of NOD1 with Atg5-mediated autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.  相似文献   

12.
During type 1 diabetes, most beta cells die by immune processes. However, the precise fate and characteristics of beta cells and islet autoimmunity after onset are unclear. Here, the extent of beta cell survival was determined in the non-obese diabetic (NOD) mouse during increasing duration of disease and correlated with insulitis. Pancreata from female NOD mice at diagnosis and at 1, 2, 3 and 4 weeks thereafter were analysed immunohistochemically for insulin, glucagon and somatostatin cells and glucose transporter-2 (glut2) and correlated with the degree of insulitis and islet immune cell phenotypes. Insulitis, although variable, persisted after diabetes and declined with increasing duration of disease. During this period, beta cells also declined sharply whereas glucagon and somatostatin cells increased, with occasional islet cells co-expressing insulin and glucagon. Glut2 was absent in insulin-containing cells from 1 week onwards. CD4 and CD8 T cells and macrophages persisted until 4 weeks, in islets with residual beta cells or extensive insulitis. We conclude that after diabetes onset, some beta cells survive for extended periods, with continuing autoimmunity and expansion of glucagon and somatostatin cells. The absence of glut2 in several insulin-positive cells suggests that some beta cells may be unresponsive to glucose.  相似文献   

13.
This study sought to determine whether invariant NKT (iNKT) cells play an essential role in inflammation-induced preterm delivery. Preterm delivery and fetal death rates were determined in wild-type (WT) C57BL/6 mice and iNKT cell-deficient Jα18(-/-) mice injected i.p. with LPS. The percentages of decidual immune cells, including activated subsets, and costimulatory molecule expression were analyzed by flow cytometry. Th1 and Th2 cytokine production in the culture supernatants of decidual mononuclear cells was measured by ELISA. To some extent, Jα18(-/-) mice were resistant to LPS-induced preterm delivery. The proportions of decidual CD3(+) and CD49b(+) cells were slightly lower in Jα18(-/-) mice than in WT Jα18(+/+) mice, whereas almost no CD3(+)CD49b(+) cells could be found in Jα18-null mice. The percentages of activated decidual DCs, T cells, and NK cells were significantly lower in LPS-treated Jα18(-/-) mice than in WT mice. The CD40, CD80, and CD86 expression levels on decidual CD11c(+) cells from Jα18(-/-) mice were also significantly lower than in WT mice. Mean concentrations of Th1 cytokines IFN-γ and IL-12p70 in the culture supernatants of decidual mononuclear cells from LPS-treated Jα18(-/-) mice were apparently lower than those of LPS-induced WT mice. Additionally, the proportions of activated CD11c(+) cells, CD3(+) cells, and CD49b(+) cells in LPS-induced preterm delivery mice were strikingly higher in both WT and null mice when compared with the control PBS group and LPS-injected but normally delivered mice. Our results suggest that iNKT cells may play an essential role in inflammation-induced preterm birth.  相似文献   

14.
《Cytotherapy》2014,16(11):1467-1475
Background aimsMesenchymal stromal cells (MSCs) have been documented to improve delayed wound healing in diabetes, but the underlying mechanism remains obscure. We aimed to investigate whether the therapeutic effects on wounds was associated with metabolic alterations by paracrine action of MSCs.MethodsMSCs from mice with high-fat diet/streptozotocin–induced diabetes or wild-type C57BL/6 mice were evaluated for their paracrine potential in vitro using enzyme-linked immunosorbent assay and immunohistochemical staining assay. MSCs were then evaluated for their therapeutic potential in vivo using an excisional cutaneous wound model in mice with diabetes. Metabolic alterations and glucose transporter four (GLUT4) as well as PI3K/Akt signaling pathway expression after wounding were also examined.ResultsMSCs from normal mice expressed even more insulin-like growth factor-1 (IGF-1) than mice with diabetes, suggesting putative paracrine action. Furthermore, compared with IGF-1 knockdown MSCs, normal MSCs markedly accelerated wound healing, as revealed by higher wound closure rate and better healing quality at 21 days post-wound. By contrast, MSCs administration increased the level of insulin as well as GLUT4 and PI3K/Akt signaling pathway expression but repressed the biochemical indexes of glucose and lipid, resulting in obvious metabolic improvement.ConclusionsThese findings suggest that IGF-1 is an important paracrine factor that mediates the therapeutic effects of MSCs on wound healing in diabetes, and the benefits of MSCs may be associated with metabolism improvements, which would provide a new target for treatment.  相似文献   

15.
This study showed that citiolone (CIT), a free radical scavenger, significantly increased superoxide dismutase (P < 0.001 vs. untreated NOD, NMMA-treated, and silica-treated animals), catalase (P < 0.01 vs. untreated NOD), and glutathione peroxidase (P < 0.001 vs. untreated NOD and C57BL6/J) values. Silica treatment was capable of counteracting the plasma antioxidant capacity (TRAP) decrease observed in untreated NOD mice, although it did not block the blood glucose rise and insulitis progression in type 1 diabetes significantly. Conversely, early silica administration was able to deplete macrophages (as demonstrated by immunocytochemistry) and to block the rise in blood glucose levels and insulitis progression significantly. Silica-treated animals in this study showed the highest TRAP levels, demonstrating that depletion of macrophages also was able to improve the antioxidant status. This study suggested that macrophages are essential for type 1 diabetes development and showed that they also are involved when the antioxidant status is affected. The reported findings are significant in view of previous studies indicating that oxygen and/or nitrogen free radicals contribute to the islet β-cell destruction in type 1 diabetes animal models. J. Cell. Biochem. 71:479–490, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
17.
Invariant natural killer T (iNKT) cells play an important role in the immune response against various infectious agents. In this study we investigated their role in human defense against the varicella zoster virus. We observed decreased numbers of iNKT cells in patients who failed to control latent varicella zoster virus infection, e.g. underwent several reactivations of the virus. The residual population of iNKT cells expressed significantly higher levels of inhibitory receptor CD158a that was further up-regulated in the course of acute viral infection. Both of these abnormalities might contribute to impaired control of varicella zoster virus in human.  相似文献   

18.
Induction and localization of NOD2 protein in human endothelial cells   总被引:3,自引:0,他引:3  
  相似文献   

19.
Allelic variation of SLAM expression on CD4(+)CD8(+) thymocytes has been proposed to play a major role in NKT cell development. In this article, this hypothesis is tested by the production of subcongenic mouse strains and Slamf1 transgenic lines. The long isoform of the C57BL/6 allele of Slamf1 was transgenically expressed on CD4(+)CD8(+) thymocytes under control of an hCD2 minigene. NOD.Nkrp1b.Tg(Slamf1)1 mice, which had a 2-fold increase in SLAM protein expression on CD4(+)CD8(+) thymocytes, had a 2-fold increase in numbers of thymic NKT cells. The additional thymic NKT cells in NOD.Nkrp1b.Tg(Slamf1)1 mice were relatively immature, with a similar subset distribution to those of congenic NOD.Nkrp1b.Nkt1 and NOD.Nkrp1b.Slamf1 mice, which also express increased levels of SLAM on CD4(+)CD8(+) thymocytes and produce larger numbers of NKT cells. Transgenic enhancement of SLAM expression also increased IL-4 and IL-17 production in response to TCR-mediated stimulation. Paradoxically, NOD.Nkrp1b.Tg(Slamf1)2 mice, which had a 7-fold increase in SLAM expression, showed no significant increase in NKT cells numbers; on the contrary, at high transgene copy number, SLAM expression levels correlated inversely with NKT cell numbers, consistent with a contribution to negative selection. These data confirm a role for SLAM in controlling NKT cell development and are consistent with a role in both positive and negative thymic selection of NKT cells.  相似文献   

20.
Natural killer cells, a critical component of the innate immune system, eradicate both virus‐infected cells and tumor cells through cytotoxicity and secretion of cytokines. Human NK cell research has largely been based on in vitro studies because of the lack of appropriate animal models. In this study, a selective proliferation model of functional human NK cells was established in NOD/SCID/Jak3null (NOJ) mice transplanted with peripheral blood mononuclear cells (PBMC) and K562 cells. The antiviral effects of NK cells were evaluated by challenging this mouse model with HIV‐1. The percentage of intracellular p24+ T cells and the amount of plasma p24 was decreased compared with NOJ mice transplanted with PBMC. Our findings indicate that NK cells have an anti‐HIV‐1 effect through direct cytotoxicity against HIV‐1‐infected cells. These mice provide an important model for evaluating human NK function against human infectious diseases such as HIV‐1 and malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号