首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two bacterial artificial chromosome (BAC) libraries were constructed using nuclear DNA from posterior silkglands of the silkworm (Bombyx mori) strains p50 and C108. The libraries contain a total of 36,864 clones, or approximately 9 genome equivalents. The average insert sizes in the libraries were 134.5?kb and 120.8?kb, respectively. PCR-based screening was performed on the p50 library using probes for 34 sequence-tagged sites (STSs). Between 3 and 11 (6.1 hits on average) clones were isolated with each STS, in good agreement with the library size, 5.8 genome equivalents. The previously reported close linkage between the Bombyx homologs of the invected (Bm in) and engrailed (Bm en) genes was confirmed by construction of a BAC contig that contained both. Moreover, screening revealed novel information about the chromosomal organization of the sericin-1 and DH-PBAN genes, which were localized within a 22-kb interval and are divergently oriented. These results show that it is possible to construct contigs and analyze chromosome organization using these libraries.  相似文献   

2.
To isolate genes of interest in plants, it is essential to construct bacterial artificial chromosome (BAC) libraries from specific genotypes. Construction and organisation of BAC libraries is laborious and costly, especially from organisms with large and complex genomes. In the present study, we developed the pooled BAC library strategy that allows rapid and low cost generation and screening of genomic libraries from any genotype of interest. The BAC library is constructed, directly organised into a few pools and screened for BAC clones of interest using PCR and hybridisation steps, without requiring organization into individual clones. As a proof of concept, a pooled BAC library of approximately 177,000 recombinant clones has been constructed from the barley cultivar Cebada Capa that carries the Rph7 leaf rust resistance gene. The library has an average insert size of 140 kb, a coverage of six barley genome equivalents and is organised in 138 pools of about 1,300 clones each. We rapidly established a single contig of six BAC clones spanning 230 kb at the Rph7 locus on chromosome 3HS. The described low-cost cloning strategy is fast and will greatly facilitate direct targeting of genes and large-scale intra- and inter-species comparative genome analysis.Edwige Isidore and Beatrice Scherrer contributed equally to the work.  相似文献   

3.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

4.
A bacterial artificial chromosome (BAC) library has been established for Arabidopsis thaliana (ecotype Col-0) covering about seven haploid nuclear genome equivalents. This library, called the Institut für Genbiologische Forschung (IGF) BAC library, consists of 10 752 recombinant clones carrying inserts (generated by partial EcoRI digestion) of an average size of about 100 kb in a modified BAC vector, pBeloBAC-Kan. Hybridization with organellar DNA and nuclear repetitive DNA elements revealed the presence of 1.1% clones with mitochondrial DNA, 0.2% clones with plastid DNA, 3.2% clones with the 180 bp paracentromeric repeat, 1.6% clones with 5S rDNA, and 10.8% clones with the 18S-25S rDNA repeat. With its extensive genome coverage, its rather uniformly sized inserts (80 kb <85% <120 kb) and low contamination with organellar DNA, this library provides an excellent resource for A. thaliana genomic mapping, map-based gene cloning, and genome sequencing. Received: 26 November 1997 / Accepted: 19 February 1998  相似文献   

5.
We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta 2 (closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 ± 1.3 and 8.0 ± 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta 2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a “two-step walking” method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta 2 . The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta 2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes. Received: 14 August 1996 / Accepted: 2 December 1996  相似文献   

6.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

7.
 A soybean bacterial artificial chromosome (BAC) library, comprising approximately 45 000 clones, was constructed from high-molecular-weight nuclear DNA of cultivar Williams 82, which carries the Rps1-k gene for resistance against Phytophthora sojae. The library is stored in 130 pools with about 350 clones per pool. Completeness of the library was evaluated for 21 random sequences including four markers linked to the Rps1 locus and 16 cDNAs. We identified pools containing BACs for all sequences except for one cDNA. Additionally, when screened for possible contaminating BAC clones carrying chloroplast genes, no sequences homologous to two barley chloroplast genes were found. The estimated average insert size of the BAC clones was about 105 kb. The library comprises about four genome equivalents of soybean DNA. Therefore, this gives a probability of 0.98 of finding a specific sequence from this library. This library should be a useful resource for the positional cloning of Rps1-k, and other soybean genes. We have also evaluated the feasibility of an RFLP-based screening procedure for the isolation of BAC clones specific for markers that are members of repetitive sequence families, and are linked to the Rps1-k gene. We show that BAC clones isolated for two genetically linked marker loci, Tgmr and TC1-2, are physically linked. Application of this method in expediting the map-based cloning of a gene, especially from an organism, such as soybean, maize and wheat, with a complex genome is discussed. Received: 12 May 1998/Accepted: 24 August 1998  相似文献   

8.
 To facilitate genome analysis and map-based cloning of symbiotic genes in the model legume Medicago truncatula, a bacterial artificial chromosome (BAC) library was constructed. The library consists of 30 720 clones with an average insert size of approximately 100 kb, representing approximately five haploid-genome equivalents. The frequency of BAC clones carrying inserts of chloroplast DNA was estimated to be 1.4%. Screening of the library with single- or low-copy genes as hybridization probes resulted in the detection of 1–12 clones per gene. Hybridization of the library with repeated sequences such as rDNA genes and transposon-like elements of M. truncatula revealed the presence of 60 and 374 BAC clones containing the two sequences, respectively. The BAC library was pooled for screening by polymerase chain reaction (PCR)-amplification. To demonstrate the utility of this system, we used primers designed from a conserved region of the ein3-like loci of Arabidopsis thaliana and isolated six unique BAC clones from the library. DNA gel-blot and sequence analyses showed that these ein3-like clones could be grouped into three classes, an observation consistent with the presence of multiple ein3-like loci in M. truncatula. These results indicate that the BAC library represents a central resource for the map-based cloning and physical mapping in M. truncatula and other legumes. Received: 27 July 1998 / Accepted: 5 August 1998  相似文献   

9.
 To facilitate construction of physical map of the rice genome, a bacterial artificial chromosome (BAC) library of IR64 genomic DNA was constructed. It consists of 18 432 clones and contains 3.28 rice genomic equivalents. The insert size ranged from 37 to 364 kb with an average of 107 kb. We used 31 RFLP markers on chromosome 4 to screen the library by colony hybridization. Sixty eight positive clones were identified with 2.2 positive clones per RFLP marker. The positive clones were analyzed to generate 29 contigs whose sizes ranged from 50 to 384 kb with an average of 145.6 kb. Chromosome walking was initiated for ten contigs linked to resistance genes. Thirty eight BAC clones were obtained and two contigs were integrated. Altogether, they covered 5.65 Mb (15.1%) of chromosome 4. These contigs may be used as landmarks for physical mapping of chromosome 4, and as starting points for chromosome walking towards the map-based cloning of disease resistance genes which were located nearby. Received: 15 November 1996 / Accepted: 24 January 1997  相似文献   

10.
Diaz-Perez, S. V., Crouch, V. W., and Orbach, M. J. 1996. Construction and characterization of aMagnaporthe griseabacterial artificial chromosome library.Fungal Genet. Biol.20,280–288. A bacterial artificial chromosome (BAC) library ofMagnaporthe griseacontaining 4128 clones with an average insert size of 66-kb has been constructed. This library represents seven genome equivalents ofM. griseaand has been demonstrated to be representative of the genome by screening for the presence of several single-copy genes and DNA markers. The utility of the library for use in map-based cloning projects was shown by the spanning of a nine-cosmid, 207-kb DNA contig with only 3 BAC clones. In addition, using alys1-3auxotroph, we have shown that BAC clones at least 113 kb can be transformed intoM. griseato screen for complementation of mutations. Thus, BACs isolated in chromosome walks can be rapidly screened for the presence of the sought after gene. The ease of construction of BAC libraries and of isolation and manipulation of BAC clones makes the BAC system an ideal one for physical analyses of fungal genomes.  相似文献   

11.
A BAC library was constructed from the genomic DNA of an intergeneric Citrus and Poncirus hybrid. The library consists of 24,576 clones with an average insert size of 115 kb, representing approximately seven haploid genome equivalents and is able to give a greater than 99% probability of isolating single-copy citrus DNA sequences from this library. High-density colony hybridization-based library screening was performed using DNA markers linked to the citrus tristeza virus (CTV) resistance gene and citrus disease resistance gene candidate (RGC) sequences. Between four and eight clones were isolated with each of the CTV resistance gene-linked markers, which agrees with the library’s predicted genome coverage. Three hundred and twenty-two clones were identified using 13 previously cloned citrus RGC sequences as probes in library screening. One to four fragments in each BAC were shown to hybridize with RGC sequences. One hundred and nine of the RGC BAC clones were fingerprinted using a sequencing gel-based procedure. From the fingerprints, 25 contigs were assembled, each having a size of 120–250 kb and consisting of 2–11 clones. These results indicate that the library is a useful resource for BAC contig construction and molecular isolation of disease resistance genes. Received: 22 May 2000 / Accepted: 25 September 2000  相似文献   

12.
Rice is a leading grain crop and the staple food for over half of the world population. Rice is also an ideal species for genetic and biological studies of cereal crops and other monocotyledonous plants because of its small genome and well developed genetic system. To facilitate rice genome analysis leading to physical mapping, the identification of molecular markers closely linked to economic traits, and map-based cloning, we have constructed two rice bacterial artificial chromosome (BAC) libraries from the parents of a permanent mapping population (Lemont and Teqing) consisting of 400 F9 recombinant inbred lines (RILs). Lemont (japonica) and Teqing (indica) represent the two major genomes of cultivated rice, both are leading commercial varieties and widely used germplasm in rice breeding programs. The Lemont library contains 7296 clones with an average insert size of 150 kb, which represents 2.6 rice haploid genome equivalents. The Teqing library contains 14208 clones with an average insert size of 130 kb, which represents 4.4. rice haploid genome equivalents. Three single-copy DNA probes were used to screen the libraries and at least two overlapping BAC clones were isolated with each probe from each library, ranging from 45 to 260 kb in insert size. Hybridization of BAC clones with chloroplast DNA probes and fluorescent in situ hybridization using BAC DNA as probes demonstrated that both libraries contain very few clones of chloroplast DNA origin and are likely free of chimeric clones. These data indicate that both BAC libraries should be suitable for map-based cloning of rice genes and physical mapping of the rice genome.  相似文献   

13.
Genome projects were initiated on grapevine (Vitis vinifera L., 2n=38, genome size 475 Mb) through the successful construction of four bacterial artificial chromosome (BAC) libraries from three major cultivars, Cabernet Sauvignon (Cabernet S), Syrah and two different clones of Pinot Noir (Pinot N). Depending on the library, the genome coverage represented 4.5–14.8 genome equivalents with clones having a mean insert size of 93–158 kb. BAC pools suitable for PCR screening were constructed for two of these BAC libraries [Cabernet S and Pinot N clone (cl) 115] and subsequently used to confirm the genome coverage of both libraries by PCR anchoring of 74 genetic markers sampled from the 19 linkage groups. For ten of these markers, two bands on separate BAC pools were differentiated that could correspond either to different alleles or to a duplication of the locus being studied. Finally, a preliminary assessment of the correspondence between genetic and physical distances was made through the anchoring of all the markers mapped along linkage group 1 of the V. vinifera genetic map. A pair of markers, 2.1 cM apart, anchored the same BAC clones, which allowed us to estimate that 1 cM corresponded in this particular region to a maximum length of 130 kb.  相似文献   

14.
Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop’s biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55 296 clones with an insert size range of 40–150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25–250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2–3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and 321 with transposable elements. The use of the library in positional cloning of pest and disease resistance genes is discussed.  相似文献   

15.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

16.
17.
To facilitate isolation and characterization of disease and insect resistance genes important to potato, two bacterial artificial chromosome (BAC) libraries were constructed from genomic DNA of the Mexican wild diploid species, Solanum pinnatisectum, which carries high levels of resistance to the most important potato pathogen and pest, the late blight and the Colorado potato beetle (CPB). One of the libraries was constructed from the DNA, partially digested with BamHI, and it consists of 40,328 clones with an average insert size of 125 kb. The other library was constructed from the DNA partially digested with EcoRI, and it consists of 17,280 clones with an average insert size of 135 kb. The two libraries, together, represent approximately six equivalents of the wild potato haploid genome. Both libraries were evaluated for contamination with organellar DNA sequences and were shown to have a very low percentage (0.65–0.91%) of clones derived from the chloroplast genome. High-density filters, prepared from the two libraries, were screened with ten restriction fragment length polymorphism (RFLP) markers linked to the resistance genes for late blight, CPB, Verticillium wilt and potato cyst nematodes, and the gene Sr1 for the self-incompatibility S-locus. Thirty nine positive clones were identified and at least two positive BAC clones were detected for each RFLP marker. Four markers that are linked to the late blight resistance gene Rpi1 hybridized to 14 BAC clones. Fifteen BAC clones were shown to harbor the PPO (polyphenol oxidase) locus for the CPB resistance by three RFLP probes. Two RFLP markers detected five BAC clones that were linked to the Sr1 gene for self-incompatibility. These results agree with the librarys predicted extent of coverage of the potato genome, and indicated that the libraries are useful resources for the molecular isolation of disease and insect resistance genes, as well as other economically important genes in the wild potato species. The development of the two potato BAC libraries provides a starting point, and landmarks for BAC contig construction and chromosome walking towards the map-based cloning of agronomically important target genes in the species.Communicated by H.F. Linskens  相似文献   

18.
Construction of a BAC library of pearl millet, Pennisetum glaucum   总被引:3,自引:0,他引:3  
A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA from pearl millet (Pennisetum glaucum), and used as a resource for the isolation of microsatellite sequences. The library contains a total of 159,100 clones with an average insert size of 90 kb, and corresponds to 5.8 haploid genome equivalents. The BAC library was pooled for screening by the polymerase chain reaction (PCR) as well as robotically gridded on high-density filters. PCR-based screening of a subset of the library (4.7 haploid genome equivalents) using five sequence-tagged site (STS) and six microsatellite markers identified between 2 and 11 positives superpools (5.4 on average). The frequency of BAC clones carrying inserts of chloroplast DNA was estimated to be less than 1% by hybridisation with a rice chloroplast probe. Received: 30 January 2000 / Accepted: 16 October 2000  相似文献   

19.
A bacterial artificial chromosome (BAC) library was constructed from high-molecular-weight DNA isolated from young leaves of papaya (Carica papaya L.). This BAC library consists of 39168 clones from two separate ligation reactions. The average insert size of the library is 132 kb; 96.5% of the 18700 clones from the first ligation contained inserts that averaged 86 kb in size, 95.7% of the 20468 clones from the second ligation contained inserts that averaged 174 kb in size. Two sorghum chloroplast probes hybridized separately to the library and revealed a total of 504 chloroplast clones or 1.4% of the library. The entire BAC library was estimated to provide 13.7× papaya-genome equivalents, excluding the false-positive and chloroplast clones. High-density filters were made containing 94% or 36864 clones of the library with 12.7× papaya-genome equivalents. Eleven papaya-cDNA and ten Arabidopsis-cDNA probes detected an average of 22.8 BACs per probe in the library. Because of its relatively small genome (372 Mbp/1 C) and its ability to produce ripe fruit 9 to 15 months after planting, papaya shows promise as a model plant for studying genes that affect fruiting characters. A rapid approach to locating fruit-controlling genes will be to assemble a physical map based on BAC contigs to which ESTs have hybridized. A physical map of the papaya genome will significantly enhance our capacity to clone and manipulate genes of economic importance. Received: 11 April 2000 / Accepted: 28 July 2000  相似文献   

20.
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号