首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA.  相似文献   

2.
The X-ray crystal structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) and alpha-amylase 2 (TVAII) have been determined at 1.6 A and 2.3 A resolution, respectively. The structures of TVAI and TVAII have been refined, R-factor of 0.182 (R(free)=0.206) and 0.179 (0.224), respectively, with good chemical geometries. Both TVAI and TVAII have four domains, N, A, B and C, and all very similar in structure. However, there are some differences in the structures between them. Domain N of TVAI interacts strongly with domains A and B, giving a spherical shape structure to the enzyme, while domain N of TVAII is isolated from the other domains, which leads to the formation of a dimer. TVAI has three bound Ca ions, whereas TVAII has only one. TVAI has eight extra loops compared to TVAII, while TVAII has two extra loops compared to TVAI. TVAI can hydrolyze substrates more efficiently than TVAII with a high molecular mass such as starch, while TVAII is much more active against cyclodextrins than TVAI and other alpha-amylases. A structural comparison of the active sites has clearly revealed this difference in substrate specificity.  相似文献   

3.
In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
André G  Tran V 《Biopolymers》2004,75(2):95-108
Alpha-amylases are widespread endo-enzymes involved in the hydrolysis of internal alpha-(1,4) glycosidic linkages of starch polymers. Molecular modeling of amylose-amylase interactions is a step toward enzymatic mechanism understanding and rational design of new enzymes. From the crystallographic complex of barley alpha-amylase AMY2-acarbose, the static aspects of amylose-amylase docking have been characterized with a model of maltododecaose (DP12) (G. André, A. Buléon, R. Haser, and V. Tran, Biopolymers 1999, Vol. 50, pp. 751-762; G. André and V. Tran, Special Publication no. 246 1999, The Royal Society of Chemistry, H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson, Eds., Cambridge, pp. 165-174). These studies, consistent with the experimental subsite mapping (K. Bak-Jensen, G. André, V. Tran, and B. Svensson, Journal of Biological Chemistry, to be published), propose a propagation scheme for an amylose chain in the active cleft of AMY2. The topographical overview of alpha-amylases identified loop 7 as a conserved segment flanking the active site. Since some crystallographic experiments suspected its high flexibility, its putative motion was explored through a robotic scheme, an alternate route to dynamics simulations that consume CPU time. The present article describes the characteristics of the flexibility of loop 7: location and motion in AMY2. A back-and-forth motion with a large amplitude of more than 0.6 nm was evaluated. This movement could be triggered by two hinge residues. It results in the loop flipping over the active site to enhance the docking of the native helical substrate through specific interactions, it positions the catalytic residues, it distorts the substrate towards its transition state geometry, and finally monitors the release of the products after hydrolysis. The residues involved in the process are now rational mutation points in the hands of molecular biologists.  相似文献   

5.
The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme.  相似文献   

6.
The electrostatic properties of seven alpha/beta-barrel enzymes selected from different evolutionary families were studied: triose phosphate isomerase, fructose-1,6-bisphosphate aldolase, pyruvate kinase, mandelate racemase, trimethylamine dehydrogenase, glycolate oxidase, and narbonin, a protein without any known enzymatic activity. The backbone of the alpha/beta-barrel has a distinct electrostatic field pattern, which is dipolar along the barrel axis. When the side chains are included in the calculations the general effect is to modulate the electrostatic pattern so that the electrostatic field is generally enhanced and is focused into a specific area near the active site. We use the electrostatic flux through a square surface near the active site to gauge the functionally relevant magnitude of the electrostatic field. The calculations reveal that in six out of the seven cases the backbone itself contributes greater than 45% of the total flux. The substantial electrostatic contribution of the backbone correlates with the known preference of alpha/beta-barrel enzymes for negatively charged substrates.  相似文献   

7.
8.
Insight into the dynamic properties of alpha-lytic protease (alpha LP) has been obtained through the use of low-temperature X-ray crystallography and multiple-conformation refinement. Previous studies of alpha LP have shown that the residues around the active site are able to move significantly to accommodate substrates of different sizes. Here we show a link between the ability to accommodate ligands and the dynamics of the binding pocket. Although the structure of alpha LP at 120 K has B-factors with a uniformly low value of 4.8 A2 for the main chain, four regions stand out as having significantly higher B-factors. Because thermal motion should be suppressed at cryogenic temperatures, the high B-factors are interpreted as the result of trapped conformational substates. The active site residues that are perturbed during accommodation of different substrates are precisely those showing conformational substates, implying that substrate binding selects a subset of conformations from the ensemble of accessible states. To better characterize the precise nature of these substates, a protein model consisting of 16 structures has been refined and evaluated. The model reveals a number of features that could not be well-described by conventional B-factors: for example, 40% of the main-chain residue conformations are distributed asymmetrically or in discrete clusters. Furthermore, these data demonstrate an unexpected correlation between motions on either side of the binding pocket that we suggest is a consequence of "dynamic close packing." These results provide strong evidence for the role of protein dynamics in substrate binding and are consistent with the results of dynamic studies of ligand binding in myoglobin and ribonuclease A.  相似文献   

9.
Resolution of the crystal structure of the banana fruit endo-beta-1,3-glucanase by synchrotron X-ray diffraction at 1.45-A resolution revealed that the enzyme possesses the eightfold beta/alpha architecture typical for family 17 glycoside hydrolases. The electronegatively charged catalytic central cleft harbors the two glutamate residues (Glu94 and Glu236) acting as hydrogen donor and nucleophile residue, respectively. Modeling using a beta-1,3 linked glucan trisaccharide as a substrate confirmed that the enzyme readily accommodates a beta-1,3-glycosidic linkage in the slightly curved catalytic groove between the glucose units in positions -2 and -1 because of the particular orientation of residue Tyr33 delimiting subsite -2. The location of Phe177 in the proximity of subsite +1 suggested that the banana glucanase might also cleave beta-1,6-branched glucans. Enzymatic assays using pustulan as a substrate demonstrated that the banana glucanase can also cleave beta-1,6-glucans as was predicted from docking experiments. Similar to many other plant endo-beta-1,3-glucanases, the banana glucanase exhibits allergenic properties because of the occurrence of well-conserved IgE-binding epitopes on the surface of the enzyme. These epitopes might trigger some cross-reactions toward IgE antibodies and thus account for the IgE-binding cross-reactivity frequently reported in patients with the latex-fruit syndrome.  相似文献   

10.
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.  相似文献   

11.
P A Rice  A Goldman  T A Steitz 《Proteins》1990,8(4):334-340
By exhaustive structural comparisons, we have found that about one-third of the alpha-helix-turn-beta-strand polypeptides in alpha-beta barrel domains share a common structural motif. The chief characteristics of this motif are that first, the geometry of the turn between the alpha-helix and the beta-strand is somewhat constrained, and second, the beta-strand contains a hydrophobic patch that fits into a hydrophobic pocket on the alpha-helix. The geometry of the turn does not seem to be a major determinant of the alpha-beta unit, because the turns vary in length from four to six residues. However, the motif does not occur when there are few constraints on the geometry of the turn-for instance, when the turns between the alpha-helix and the beta-strands are very long. It also occurs much less frequently in flat-sheet alpha-beta proteins, where the topology is much less regular and the amount of twist on the sheet varies considerably more than in the barrel proteins. The motif may be one of the basic building blocks from which alpha-beta barrels are constructed.  相似文献   

12.
The three-dimensional structure of betaine aldehyde dehydrogenase, the most abundant aldehyde dehydrogenase (ALDH) of cod liver, has been determined at 2.1 A resolution by the X-ray crystallographic method of molecular replacement. This enzyme represents a novel structure of the highly multiple ALDH, with at least 12 distinct classes in humans. This betaine ALDH of class 9 is different from the two recently determined ALDH structures (classes 2 and 3). Like these, the betaine ALDH structure has three domains, one coenzyme binding domain, one catalytic domain, and one oligomerization domain. Crystals grown in the presence or absence of NAD+ have very similar structures and no significant conformational change occurs upon coenzyme binding. This is probably due to the tight interactions between domains within the subunit and between subunits in the tetramer. The oligomerization domains link the catalytic domains together into two 20-stranded pleated sheet structures. The overall structure is similar to that of the tetrameric bovine class 2 and dimeric rat class 3 ALDH, but the coenzyme binding with the nicotinamide in anti conformation, resembles that of class 2 rather than of class 3.  相似文献   

13.
alpha-Amylases, in particular, microbial alpha-amylases, are widely used in industrial processes such as starch liquefaction and pulp processes, and more recently in detergency. Due to the need for alpha-amylases with high specific activity and activity at alkaline pH, which are critical parameters, for example, for the use in detergents, we have enhanced the alpha-amylase from Bacillus amyloliquefaciens (BAA). The genes coding for the wild-type BAA and the mutants BAA S201N and BAA N297D were subjected to error-prone PCR and gene shuffling. For the screening of mutants we developed a novel, reliable assay suitable for high throughput screening based on the Phadebas assay. One mutant (BAA 42) has an optimal activity at pH 7, corresponding to a shift of one pH unit compared to the wild type. BAA 42 is active over a broader pH range than the wild type, resulting in a 5-fold higher activity at pH 10. In addition, the activity in periplasmic extracts and the specific activity increased 4- and 1.5-fold, respectively. Another mutant (BAA 29) possesses a wild-type-like pH profile but possesses a 40-fold higher activity in periplasmic extracts and a 9-fold higher specific activity. The comparison of the amino acid sequences of these two mutants with other homologous microbial alpha-amylases revealed the mutation of the highly conserved residues W194R, S197P, and A230V. In addition, three further mutations were found K406R, N414S, and E356D, the latter being present in other bacterial alpha-amylases.  相似文献   

14.
Growth of Bacillus subtilis TN106[pAT5] and synthesis of plasmid-encoded protein (alpha-amylase) are investigated in batch, continuous, and fed-batch cultures using a defined medium containing glucose and/or starch as the carbohydrate source. The batch culture studies reveal that reduced availability of arginine hampers growth of recombinant cells (which lack an arginine synthesis gene) but promotes production of alpha-amylase and substitution of glucose by starch as the carbohydrate source leads to slower growth of recombinant cells and increased production of alpha-amylase per unit cell mass. Retention of recombinant cells over prolonged periods in continuous cultures is not possible without continuous application of antibiotic selection pressure owing to segregational plasmid instability. Fed-batch experiments with constant volumetric feed rate demonstrate that alpha-amylase production is enhanced at lower feed concentration of starch (sole carbohydrate source) and lower volumetric feed rate. Such slow addition of starch is however not conducive for growth of recombinant cells. The expression of the thermostable alpha-amylase gene carried on the recombinant plasmid pAT5 (derived from a plasmid isolated from a thermophilic bacterium) is promoted at higher temperatures, while growth of recombinant cells is depressed. In all batch and fed-batch experiments, production of alpha-amylase is observed to be inversely related to growth of recombinant cells. The efficacy of two-stage bioreactor operations, with growth of recombinant cells being promoted in the first stage and alpha-amylase production in the second stage, in attaining increased bulk alpha-amylase activity is demonstrated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Proteins are generally classified into four structural classes: all-alpha proteins, all-beta proteins, alpha + beta proteins, and alpha/beta proteins. In this article, a protein is expressed as a vector of 20-dimensional space, in which its 20 components are defined by the composition of its 20 amino acids. Based on this, a new method, the so-called maximum component coefficient method, is proposed for predicting the structural class of a protein according to its amino acid composition. In comparison with the existing methods, the new method yields a higher general accuracy of prediction. Especially for the all-alpha proteins, the rate of correct prediction obtained by the new method is much higher than that by any of the existing methods. For instance, for the 19 all-alpha proteins investigated previously by P.Y. Chou, the rate of correct prediction by means of his method was 84.2%, but the correct rate when predicted with the new method would be 100%! Furthermore, the new method is characterized by an explicable physical picture. This is reflected by the process in which the vector representing a protein to be predicted is decomposed into four component vectors, each of which corresponds to one of the norms of the four protein structural classes.  相似文献   

16.
The chemokine family of chemotactic cytokines plays a key role in orchestrating the immune response. The family has been divided into 2 subfamilies, alpha and beta, based on the spacing of the first 2 cysteine residues, function, and chromosomal location. Members within each subfamily have 25-70% sequence identity, whereas the amino acid identity between members of the 2 subfamilies ranges from 20 to 40%. A quantitative analysis of the hydrophobic properties of 11 alpha and 9 beta chemokine sequences, based on the coordinates of the prototypic alpha and beta chemokines, interleukin-8 (IL-8), and human macrophage inflammatory protein-1 beta (hMIP-1 beta), respectively, is presented. The monomers of the alpha and beta chemokines have their strongest core hydrophobic cluster at equivalent positions, consistent with their similar tertiary structures. In contrast, the pattern of monomer surface hydrophobicity between the alpha and beta chemokines differs in a manner that is fully consistent with the observed differences in quaternary structure. The most hydrophobic surface clusters on the monomer subunits are located in very different regions of the alpha and beta chemokines and comprise in each case the amino acids that are buried at the interface of their respective dimers. The theoretical analysis of hydrophobicity strongly supports the hypothesis that the distinct dimers observed for IL-8 and hMIP-1 beta are preserved for all the alpha and beta chemokines, respectively. This provides a rational explanation for the lack of receptor crossbinding and reactivity between the alpha and beta chemokine subfamilies.  相似文献   

17.
Rice seed callus expressed and secreted alpha-amylase at high levels. Twenty percent of the protein secreted by the callus was alphaamylase. The callus secreted about 840 mug alpha-amylase with 10.9 x 10(3) units of activity per gram dry weight callus per day. The alpha-amylase from callus exhibited a more complex isoform pattern than the germinating seed alpha-amylase. In addition, the level of mRNA expression by the five alpha-amylase gene groups was markedly different between callus and the germinating seed. The rice callus culture has features which it attractive as a potential system for expression proteins in plant cell fermentation systems.  相似文献   

18.
The impact of high hydrostatic pressure and temperature on the stability and catalytic activity of alpha-amylase from barley malt has been investigated. Inactivation experiments with alpha-amylase in the presence and absence of calcium ions have been carried out under combined pressure-temperature treatments in the range of 0.1-800 MPa and 30-75 degrees C. A stabilizing effect of Ca(2+) ions on the enzyme was found at all pressure-temperature combinations investigated. Kinetic analysis showed deviations of simple first-order reactions which were attributed to the presence of isoenzyme fractions. Polynomial models were used to describe the pressure-temperature dependence of the inactivation rate constants. Derived from that, pressure-temperature isokinetic diagrams were constructed, indicating synergistic and antagonistic effects of pressure and temperature on the inactivation of alpha-amylase. Pressure up to 200 MPa significantly stabilized the enzyme against temperature-induced inactivation. On the other hand, pressure also hampers the catalytic activity of alpha-amylase and a progressive deceleration of the conversion rate was detected at all temperatures investigated. However, for the overall reaction of blocked p-nitrophenyl maltoheptaoside cleavage and simultaneous occurring enzyme inactivation in ACES buffer (0.1 M, pH 5.6, 3.8 mM CaCl(2)), a maximum of substrate cleavage was identified at 152 MPa and 64 degrees C, yielding approximately 25% higher substrate conversion after 30 min, as compared to the maximum at ambient pressure and 59 degrees C.  相似文献   

19.
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed.  相似文献   

20.
A stochastic model was developed that was used to describe the formation and breakdown of all saccharides involved during alpha-amylolytic starch hydrolysis in time. This model is based on the subsite maps found in literature for Bacillus amyloliquefaciens alpha-amylase (BAA) and Bacillus licheniformis alpha-amylase (BLA). Carbohydrate substrates were modeled in a relatively simple two-dimensional matrix. The predicted weight fractions of carbohydrates ranging from glucose to heptasaccharides and the predicted dextrose equivalent showed the same trend and order of magnitude as the corresponding experimental values. However, the absolute values were not the same. In case a well-defined substrate such as maltohexaose was used, comparable differences between the experimental and simulated data were observed indicating that the substrate model for starch does not cause these deviations. After changing the subsite map of BLA and the ratio between the time required for a productive and a non-productive attack for BAA, a better agreement between the model data and the experimental data was observed. Although the model input should be improved for more accurate predictions, the model can already be used to gain knowledge about the concentrations of all carbohydrates during hydrolysis with an alpha-amylase. In addition, this model also seems to be applicable to other depolymerase-based systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号