首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels.  相似文献   

2.
Visual deprivation and distance estimation in the praying mantis larva   总被引:1,自引:0,他引:1  
Abstract. Young larvae of the praying mantis, Tenodera sinensis Saussure, were placed on an off-centre island surrounded by a round arena with six black bars painted on a white inner wall. In this situation, it was shown that the horizontal peering movements of the head often seen in mantids are in fact used to measure distances; motion parallax may be involved in this process. Aimed jumps that followed peering were taken to be the distinct result of an absolute distance measurement. Specific visual deprivation such as painting over of certain parts of the eye with opaque black varnish or degeneration of the fovea with sulforhodamine showed that: absolute evaluation of distance is only possible with two fully intact eyes; the peering mechanism is under visual control; and visual experience has a long-term effect on distance measurement involving peering movements.  相似文献   

3.
Before jumping to a landing object, praying mantids determine the distance, using information obtained from retinal image motion resulting from horizontal peering movements. The present study investigates the peering-jump behaviour of Mantis religiosa larvae with regard to jump targets differing in shape and size. The experimental animals were presented with square, triangular and round target objects with visual extensions of 20 degrees and 40 degrees. The cardboard objects, presented against a uniform white background, were solid black or shaded with a gradation from white to black. It was found that larger objects were preferred to smaller ones as jump targets, and that the square and triangle were preferred to the round disk. When two objects were presented, no preference was exhibited between square and triangular objects. However, when three objects were presented, the square was preferred. For targets with a visual angle of 40 degrees, the amplitude and velocity of the horizontal peering movements were greater for the round disk than for the square or triangle. This amplification of the peering movements suggests that weaker motion signals are generated in the case of curved edges. This may help to account for the preference for the square and triangle as jump targets.  相似文献   

4.
Despite being equipped with low-resolution eyes and tiny brains, many insects show exquisite abilities to detect and pursue targets even in highly textured surrounds. Target tracking behavior is subserved by neurons that are sharply tuned to the motion of small high-contrast targets. These neurons respond robustly to target motion, even against self-generated optic flow. A recent model, supported by neurophysiology, generates target selectivity by being sharply tuned to the unique spatiotemporal profile associated with target motion. Target neurons are likely connected in a complex network where some provide more direct output to behavior, whereas others serve an inter-regulatory role. These interactions may regulate attention and aid in the robust detection of targets in clutter observed in behavior.  相似文献   

5.
Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces.  相似文献   

6.
Many animals visualize and track small moving targets at long distances-be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below the resolution limit of the eye. Many STMDs also respond robustly to small targets against complex stationary or moving backgrounds. We hypothesized that this requires a complex mechanism to avoid breakthrough responses by background features, and yet to adequately amplify the weak signal of tiny targets. We compared responses of dragonfly STMD neurons to small targets that begin moving within the receptive field with responses to targets that approach the same location along longer trajectories. We find that responses along longer trajectories are strongly facilitated by a mechanism that builds up slowly over several hundred milliseconds. This allows the neurons to give sustained responses to continuous target motion, thus providing a possible explanation for their extraordinary sensitivity.  相似文献   

7.
为明确黄土高原丘陵区第三副区典型流域-甘肃天水罗玉沟流域刺槐生长过程及其与气候关系随海拔变化的规律。利用树木年代学方法分别建立高、中、低3个海拔刺槐的标准年表,并分析不同海拔刺槐径向生长过程以及对气候变化的响应。研究结果表明:(1)中、低海拔刺槐径向生长与温度因素多为负相关,而高海拔刺槐径向生长与温度因素多呈正相关。高海拔刺槐生长与上一年生长季(6月)、休眠期(当年3—4月)和当年生长季(6月)均温、最低温和最高温呈显著正相关,其中受最低温影响最显著;中、低海拔刺槐与上一年生长季和当年生长季的均温、最高温和最低温呈显著负相关,低海拔受均温影响显著。(2)随海拔升高,刺槐径向生长与降水和相对湿度的正相关呈降低趋势。低海拔刺槐生长与上一年生长季(7—9月)和当年生长季(6—9月)降水、相对湿度呈显著正相关,中海拔刺槐与当年生长季(6—9月)降水、相对湿度呈显著正相关,而高海拔刺槐生长与上一年生长季(6—7月)相对湿度呈显著负相关。(3)低海拔刺槐与上一年6月—当年10月帕默尔干旱指数(PDSI)呈显著正相关;中海拔刺槐与上一年6月和当年2—10月PDSI呈显著正相关;高海拔刺槐与上一年6—...  相似文献   

8.
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron.  相似文献   

9.
Fixation of river flow passages and riverbed degradation may facilitate the development of higher floodplains with the establishment of exotic species such as black locust (Robinia pseudoacacia L.). We quantitatively evaluated the relationship between nitrogen (N) levels in black locust trees and in sediments under different flood disturbance regimes in a riparian area of the Chikuma River. In this study, allometric equations were developed for relating leaf N content to diameter at breast height of black locust. The amount of leaf N in black locust increased with distance from the river, reaching 159 kg N ha−1 at 180 m from the river. There was a small difference in N content between green and fallen leaves (0.2%), and so the leaf N was almost equivalent to N input to riparian sediments. Fine sediments accumulated on the riparian area, where the amount of sediments N increased with distance from the river, ranging from 1091 ± 767 to 4953 ± 2953 kg N ha−1. The N accumulation rates also increased with distance from the river, corresponding with the amount of leaf N in black locust per unit area, but the former exceeded the latter. The sediment N accumulation might be accelerated by sediment trapping effect due to riparian vegetation itself. A large input of N provided by invaded black locust might alter nutrient dynamics and native plant community structure in the riparian area.  相似文献   

10.
Abstract The optomotor yaw response of the desert locust, Schistocerca gregaria (Forsk.), was investigated under open- and closed-loop conditions. When flying tethered in the centre of a vertically striped hollow sphere, the polarity of response of the locust was always the same as the stimulus. The response, therefore, appears suitable to stabilize body posture against passive rotations around the yaw-axis in free flight. Responses were induced by contrast frequencies up to 150 Hz with a maximum of amplitude at about 20 Hz. The characteristic curve, measured between 0.3 and 160 Hz, is widened up towards higher frequencies as compared with those of bees and flies.
Variability was the most striking feature in the locust's yaw response. The amplitude of modulation not only varied greatly between individuals but also changed with the same visual stimulus in the course of an experiment. We therefore suppose that the locust's turning behaviour is subject to gain control mechanisms and that spontaneous gain modulations are responsible for the observed variability in the stimulus-response conversion.  相似文献   

11.
The camel tick,Hyalomma dromedarii, exhibited positive scototaxis in an arena, e.g. it oriented towards a black or grey target in front of a white background. The degree of the scototactic response varied with the size and the elevation of the target, with its luminance contrast, with its shape and with the speed by which the target was moved: (1) the response to stationary and moving targets increased with increasing target size; (2) presentation of the targets at an elevation of 11o–15o induced the highest response; (3) the response decreased with decreasing luminance contrast of the target; (4) targets with the shape of a disk, a triangle standing on a vertex, a vertical bar or a silhouette of a dromedary caused high responses; a low response was observed when the target was a horizontal bar and there was no response to a striped pattern; (5) the smaller the size of a disk, the faster it had to be moved to elicit an optimum response.The smallest disk which elicited a significant response appeared under a visual angle of 4.8o for a thick at the starting point. The smallest dromedary-shaped silhouette which elicited a significant response corresponded to the silhouette of a real dromedary at a distance of 18 m.  相似文献   

12.
蝗虫生境监测方法研究进展   总被引:10,自引:0,他引:10  
石瑞香  刘闯  李典谟  谢宝瑜 《生态学报》2003,23(11):2475-2483
蝗虫是一种能对农业生产带来毁灭性打击的害虫。预测、监测蝗虫的发生、发展对于防治蝗虫、减轻蝗灾具有重要意义。在分析蝗虫的发生和消长与其生存环境的关系基础上,概述了以往蝗虫发生、发展预测、监测的主要方法。然后,从监测蝗虫生境采用的指标、卫星数据、算法等方面进一步阐述了运用现代遥感、地理信息系统技术监测蝗虫生境、预测蝗虫发生、发展的理论基础和最新进展;最后,结合现代对地观测技术、网络、快速计算和模拟等技术的发展探讨了蝗虫生境监测的发展方向。  相似文献   

13.
Utilizing a three-ramp platform, we studied the detection of a revolving and a stationary target in the presence of background clutter by trained Eptesicus fuscus. During the test, the mean amplitude of echo from either target was always larger than that of the background echoes at the bat-to-target distance of 30, 70 and 100 cm. The amplitude of the echo reflected back from a revolving target was modulated between a maximum and a minimum value. An electric motor was used to revolve a target. The frequency contents of the motor noise were mostly below 1 kHz. While the total percent response of approaching either target is always more than 90% at every bat-to-target distance tested, the bats approach a revolving target more frequently than a stationary one. Echolocation pulses emitted by the bats during the test were recorded and analyzed. The bats shortened their pulse durations and interpulse intervals and lowered the frequency contents as they entered into the crawling phase from the searching phase. Potential interference of background echoes and ambient noise with the performance of the bats is discussed. The preference of a revolving target to a stationary one by the bats is perhaps due to the fact that a revolving target has a higher releasing value than a stationary one does.  相似文献   

14.
This review article is devoted to results on distance measurement in locusts (e.g., Wallace, 1959; Collett, 1978; Sobel, 1990) and mantids. Before locusts or mantids jump toward a stationary object, they perform characteristic pendulum movements with the head or body, called peering movements, in the direction of the object. The fact that the animals over- or underestimate the distance to the object when the object is moved with or against the peering movement, and so perform jumps that are too long or short, would seem to indicate that motion parallax is used in this distance measurement. The behavior of the peering parameters with different object distances also indicates that not only retinal image motion but also the animal’s own movement is used in calculating the distance.  相似文献   

15.
采用“双选”的心理物理学方法 ,研究了训练后的大棕蝠 (Eptesicusfuscus)在背景干扰的条件下探测半圆形目标的能力。半圆形目标系以静止、旋转、摆动或不同组合的旋转与摆动呈现于蝙蝠。在测试室 ,蝙蝠-目标间距从 3 0cm开始 ,依次递增 10cm直至 110cm为止。当蝙蝠 -目标间距小于 80cm时 ,目标回声的强度总是大于背景干扰声。由旋转目标反射的回声强度则依正弦波调制。结果发现 :蝙蝠对目标的正确探测率随蝙蝠 -目标间距的增加而降低 ;在每一特定间距 ,对移动目标的正确探测率均高于对静止目标的正确探测率  相似文献   

16.
We recorded the activity of the right and left descending contralateral movement detectors responding to 10-cm (small) or 20-cm (large) computer-generated spheres approaching along different trajectories in the locust's frontal field of view. In separate experiments we examined the steering responses of tethered flying locusts to identical stimuli. The descending contralateral movement detectors were more sensitive to variations in target trajectory in the horizontal plane than in the vertical plane. Descending contralateral movement detector activity was related to target trajectory and to target size and was most sensitive to small objects converging on a direct collision course from above and to one side. Small objects failed to induce collision avoidance manoeuvres whereas large objects produced reliable collision avoidance responses. Large targets approaching along a converging trajectory produced steering responses that were either away from or toward the side of approach of the object, whereas targets approaching along trajectories that were offset from the locust's mid-longitudinal body axis primarily evoked responses away from the target. We detected no differences in the discharge properties of the descending contralateral movement detector pair that could account for the different collision avoidance behaviours evoked by varying the target size and trajectories. We suggest that descending contralateral movement detector properties are better suited to predator evasion than collision avoidance.  相似文献   

17.
Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation.  相似文献   

18.
Black locust (Robinia pseudoacacia L.), like willow and poplar, is a hardwood species which can be grown in coppice for bioenergy production, and because of its nitrogen-fixing ability, it can be cultivated with higher yields on less productive land. For these experiments, we examined the feasibility of using ammonia fiber expansion (AFEX) pretreatment to increase the saccharification yields from black locust grown for bioethanol production, as well as examine the impact of posttreatments (hot-water washing and additional size reduction) on sugar yields. The optimal AFEX conditions for black locust were 180°C, 1.0?g NH3/g dry biomass, 2.5?g H2O/g dry biomass, for 30?min residence time, and of the parameters tested, temperature had the greatest impact on yields. Yields from the sample without posttreatment and hydrolyzed at the standard enzyme loading were very low: <30% glucose and ??50% hemicellulose. Both hot-water washing and size reduction improved yields; however, size reduction had a more significant effect indicating that increasing enzyme accessibility is more important for digestibility as opposed to the removal of soluble inhibitors. The effect of size reduction was comparable to that obtained by quadrupling the enzyme loading, increasing glucose yields by ??20?C30% and hemicellulose yields by ??20%. Untreated black locust is known to contain compounds which are inhibitory to both enzymes and microorganisms and AFEX pretreatment neutralizes this inhibitory effect to some extent.  相似文献   

19.
The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.  相似文献   

20.
The motion of a population of chemotactic bacteria in a radial exponential gradient of attractant in a cylindrical container has been calculated using a mathematical model suggested by Keller and Segel. Numerical solutions for the equations of bacterial migration have been found which give for all times the cell density at distances from the center of the cylinder. The ultimate distribution of bacteria is a simple stationary exponential function of the distance. Experiments to verify the theoretical predictions are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号