首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang W  Lin Z  Kulessa H  Hebert J  Hogan BL  Wu DK 《PLoS genetics》2008,4(4):e1000050
Angular head movements in vertebrates are detected by the three semicircular canals of the inner ear and their associated sensory tissues, the cristae. Bone morphogenetic protein 4 (Bmp4), a member of the Transforming growth factor family (TGF-β), is conservatively expressed in the developing cristae in several species, including zebrafish, frog, chicken, and mouse. Using mouse models in which Bmp4 is conditionally deleted within the inner ear, as well as chicken models in which Bmp signaling is knocked down specifically in the cristae, we show that Bmp4 is essential for the formation of all three cristae and their associated canals. Our results indicate that Bmp4 does not mediate the formation of sensory hair and supporting cells within the cristae by directly regulating genes required for prosensory development in the inner ear such as Serrate1 (Jagged1 in mouse), Fgf10, and Sox2. Instead, Bmp4 most likely mediates crista formation by regulating Lmo4 and Msx1 in the sensory region and Gata3, p75Ngfr, and Lmo4 in the non-sensory region of the crista, the septum cruciatum. In the canals, Bmp2 and Dlx5 are regulated by Bmp4, either directly or indirectly. Mechanisms involved in the formation of sensory organs of the vertebrate inner ear are thought to be analogous to those regulating sensory bristle formation in Drosophila. Our results suggest that, in comparison to sensory bristles, crista formation within the inner ear requires an additional step of sensory and non-sensory fate specification.  相似文献   

2.
Bone morphogenetic protein 4 (Bmp4) is expressed during multiple stages of development of the chicken inner ear. At the otocyst stage, Bmp4 is expressed in each presumptive sensory organ, as well as in the mesenchymal cells surrounding the region of the otocyst that is destined to form the semicircular canals. After the formation of the gross anatomy of the inner ear, Bmp4 expression persists in some sensory organs and restricted domains of the semicircular canals. To address the role of this gene in inner ear development, we blocked BMP4 function(s) by delivering one of its antagonists, Noggin, to the developing inner ear in ovo. Exogenous Noggin was delivered to the developing otocyst by using a replication-competent avian retrovirus encoding the Noggin cDNA (RCAS-N) or implanting beads coated with Noggin protein. Noggin treatment resulted in a variety of phenotypes involving both sensory and nonsensory components of the inner ear. Among the nonsensory structures, the semicircular canals were the most sensitive and the endolymphatic duct and sac most resistant to exogenous Noggin. Noggin affected the proliferation of the primordial canal outpouch, as well as the continual outgrowth of the canal after its formation. In addition, Noggin affected the structural patterning of the cristae, possibly via a decrease of Msx1 and p75NGFR expression. These results suggest that BMP4 and possibly other BMPs are required for multiple phases of inner ear development.  相似文献   

3.

Background

The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.

Methodology/Principal Findings

We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.

Conclusions/Significance

Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.  相似文献   

4.
The vertebrate inner ear consists of a complex labyrinth of epithelial cells that is surrounded by a bony capsule. The molecular mechanisms coordinating the development of the membranous and bony labyrinths are largely unknown. Previously, using avian retrovirus encoding Noggin (RCAS-Noggin) or beads soaked with Noggin protein, we have shown that bone morphogenetic proteins (BMPs) are important for the development of the otic epithelium in the chicken inner ear. Here, using two additional recombinant avian retroviruses, dominant negative and constitutively active forms of BMP receptors IB (BMPRIB), we show that BMPs, possibly acting through BMPRIB, are important for otic capsule formation. We also show that Bmp2 is strongly expressed in the prospective semicircular canals starting from the canal outpouch stage, suggesting that BMP2 plays an important role in canal formation. In addition, by correlating expression patterns of Bmps, their receptors, and localization of phosphorylated R-Smad (phospho R-Smad) immunoreactivity, an indicator of BMP activation, we show that BMPs emanating from the otic epithelium influence chondrogenesis of the otic capsule including the cartilage surrounding the semicircular canals.  相似文献   

5.
6.
We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.  相似文献   

7.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

8.
Summary Because the secretion of endolymph has been localized in the ampullar part of the frog semicircular canal, we attempted to determine by cytochemical methods the ultrastructural localization of two enzymes that are assumed to play a role in endolymph secretion: carbonic anhydrase and adenylate cyclase. Functionally, the epithelium of the frog semicircular canal can be schematically divided into three areas: sensory (crista ampullaris), secretory (dark cells), and non-sensory and nonsecretory (transitional and undifferentiated cells) areas. Carbonic anhydrase activity was widely distributed in dark cells. Dark cell labeling disappeared in the presence of acetazolamide. The other cells of the canal did not show any carbonic anhydrase labeling except for the supporting cells of the sensory cells. Adenylate cyclase activity was found on the basolateral and apical membranes of dark cells, and on the apical membrane of sensory cells; weak labeling was also observed in the other epithelial cells. In the apical membrane of the dark cells, adenylate cyclase labeling was dependent on the presence of vasotocin, the frog antidiuretic hormone. The dark cells of the frog semicircular canal thus possess the enzyme equipment needed for the secretion of endolymph and its possible hormonal regulation.  相似文献   

9.
At embryonic day 8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1a dr) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal, for the first time, that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule, and utricle (a “cochlear-gravistatic” endorgan). The enlarged anterior canal crista develops by fusion of horizontal and anterior crista, whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan, the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane, and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region, which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region, whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression, thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti shows a loss of cochlear hair cells, suggesting that the long-term maintenance of hair cells is also disrupted in these mutants. This work was supported by grants from the NCRR/COBRE (P20 RR 018788; D.H.N.) and NIH (RO1 DC 005590; B.F.). Parts of this investigation were conducted in a facility constructed with support of a Research Facilities Improvement Program Grant from the National Center for Research Resources, National Institutes of Health. We acknowledge the use of the confocal microscope facility of the NCCB, supported by EPSCoR EPS-0346476 (CFD 47.076), and of the University of Nebraska microarray facility, supported by NCRR/COBRE.  相似文献   

10.
Bone morphogenetic protein 4 (BMP4) is known to regulate dorsoventral patterning, limb bud formation and axis specification in many organisms, including the chicken. In the chick developing inner ear, BMP4 expression becomes localized in two cell clusters at the anterior and posterior edges of the otic epithelium beginning at stage 16/17 and is expressed in presumptive sensory tissue at later stages. This restricted spatiotemporal pattern of expression occurs just prior to the otocyst's transition to a more complex three-dimensional structure. To further analyze the role of BMP4 in avian otic morphogenesis, cells expressing BMP4 or its antagonist, noggin, were grown on agarose beads and implanted into the periotic mesenchyme surrounding the chick otocyst. Although the BMP4-producing cells had no effect on the mature inner ear structure when implanted alone, noggin-producing cells implanted adjacent to the BMP4 cell foci prevented normal semicircular canal development. Beads implanted at the anterior BMP4 focus eliminated the anterior and/or the horizontal canals. Noggin cells implanted at the posterior focus eliminated the posterior canal. Canal loss was prevented by co-implantation of BMP4 cell beads next to noggin beads. An antibody to the chick hair cell antigen (HCA) was used to examine sensory cell distribution, which was abnormal only in the affected tissues of noggin-exposed inner ears. These data suggest a role for BMP4 in the accurate and complete morphological development of the semicircular canals.  相似文献   

11.
Abnormal formation of otoconia, the biominerals of the inner ear, results in balance disorders. The inertial mass of otoconia activates the underlying mechanosensory hair cells in response to change in head position primarily during linear and rotational acceleration. Otoconia associate exclusively with the two gravity receptors, the utricle and saccule. The cristae sensory epithelium is associated with an extracellular gelatinous matrix known as cupula, equivalent to otoconia. During head rotation, the inertia of endolymphatic fluids within the semicircular canals deflects the cupula of the corresponding crista and activates the underlying mechanosensory hair cells. It is believed that detached free‐floating otoconia particles travel ectopically to the semicircular canal and cristae and are the culprit for benign paroxysmal positional vertigo (BPPV). The Slc26a4 mouse mutant harbors a missense mutation in pendrin. This mutation leads to impaired transport activity of pendrin and to defects in otoconia composition and distribution. All Slc26a4 loop/loop homozygous mutant mice are profoundly deaf but show inconsistent vestibular deficiency. A panel of behavioral tests was utilized in order to generate a scoring method for vestibular function. A pathological finding of displaced otoconia was identified consistently in the inner ears of mutant mice with severe vestibular dysfunction. In this work, we present a mouse model with a genetic predisposition for ectopic otoconia with a clinical correlation to BPPV. This unique mouse model can serve as a platform for further investigation of BPPV pathophysiology, and for developing novel treatment approaches in a live animal model.  相似文献   

12.
We identified a semidominant, chemically induced, mouse mutation with a complex array of abnormal behaviors including bidirectional circling and hyperactivity, abnormal circadian rhythmicity and abnormal responses to light. In this report, we genetically and phenotypically characterized the circling/waltzing component of the abnormal behavior. We mapped the locus controlling this trait by heterozygosity mapping of partially congenic lines carrying the mutagenized chromosome outcrossed to different inbred strains for three generations. Analysis of 68 PCR-based markers in 13 affected individuals indicated that the mutant locus, named Wheels (Whl), resides in the subcentromeric portion of mouse chromosome 4. The statistical evaluation of data obtained by heterozygosity mapping validates this efficient mapping approach. Further characterization of the Whl mutation demonstrated that Whl/Whl homozygotes die during embryonic life and that the penetrance of circling behavior depends on genetic background. Morphological analysis of the inner ears of Whl/+ mice revealed a variable number of abnormalities in the sensory and nonsensory portions of their semicircular canals. Abnormalities ranged from slight atrophy of one or more cristae to complete absence of the lateral crista and canal. The molecular characterization of the gene disrupted in the Whl mutation will provide insight into developmental mechanisms involved in inner ear formation.  相似文献   

13.
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.  相似文献   

16.
An experiment was undertaken to determine which sensory structures of the mouse embryo inner ear developed from what portion of the mouse otocyst. Otocysts of gestation days 10, 11, 12 and 13 were divided by surgical dissection into six anatomical groups: dorsal, ventral, anterior, posterior, medial and lateral halves. They were organ cultured separately. After a period of ten days, the explanted tissues were harvested and processed histologically for microscopic analysis. The surgical control specimens fixed at the time of explanation were composed of undifferentiated ectodermal cells for tissues of gestation days 10, 11, and 12. Otocysts of gestation day ten showed no gross morphological differentiation. Otocysts of gestation days 11 and 12 showed, during the course of their subsequent growth, that the three semicircular ducts and their associated cristae developed from the dorsal and lateral halves. Only the anterior and posterior canals and cristae originated from the medial portion. The posterior half gave rise to the posterior crista and the anterior half provided for the development of the anterior and lateral cristae. The cochlear duct and its sensory epithelium developed in all the anatomical groups except the dorsal half. The utricle developed in the dorsal section of the middle third of the otocyst, while the utricular macula developed in the anterior half of the same section of the otocyst. The saccule and its macula differentiated from the ventral section of the middle third of the anterior half.  相似文献   

17.
FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation.  相似文献   

18.
《Palaeoworld》2019,28(4):550-561
Mosasaurs were among the last marine reptiles that lived before the Cretacesous–Paleogene extinction. Little is known about the sensory evolution of mosasaurs in relation to their aquatic lifestyle. In this study, the braincase of Platecarpus was CT-scanned and virtual models were constructed showing the bony labyrinth — or the inner ear — a sensory apparatus for balance and hearing. The virtual inner ear consists of the semicircular canals, vestibule, and cochlea. Compared with extant squamates, Platecarpus resembles sea snakes in having a small vestibule with a flat dorsal surface, but it differs from non-mosasaurian squamates in having rounded semicircular canals. Phylogenetic linear regression analysis supports a linear relationship, independent from phylogeny, between the length of the three semicircular canals and the length of the skull. The semicircular canals of Platecarpus are shorter than predicted, but the fossil data fell within the 95% prediction interval calculated from the extant data and the skull length of Platecarpus. Although size reduction of the bony labyrinth has been associated with aquatic adaptions in mammals, our results suggest that in squamates, semicircular canal size is related to skull size rather than habitat preference.  相似文献   

19.
The inner ear of adult agnathan vertebrates is relatively symmetric about the anteroposterior axis, with only two semicircular canals and a single sensory macula. This contrasts with the highly asymmetric gnathostome arrangement of three canals and several separate maculae. Symmetric ears can be obtained experimentally in gnathostomes in several ways, including by manipulation of zebrafish Hedgehog signalling, and it has been suggested that these phenotypes might represent an atavistic condition. We have found, however, that the symmetry of the adult lamprey inner ear is not reflected in its early development; the lamprey otic vesicle is highly asymmetric about the anteroposterior axis, both morphologically and molecularly, and bears a striking resemblance to the zebrafish otic vesicle. The single sensory macula originates as two foci of hair cells, and later shows regions of homology to the zebrafish utricular and saccular maculae. It is likely, therefore, that the last common ancestor of lampreys and gnathostomes already had well-defined otic anteroposterior asymmetries. Both lamprey and zebrafish otic vesicles express a target of Hedgehog signalling, patched, indicating that both are responsive to Hedgehog signalling. One significant distinction between agnathans and gnathostomes, however, is the acquisition of otic Otx1 expression in the gnathostome lineage. We show that Otx1 knockdown in zebrafish, as in Otx1(-/-) mice, gives rise to lamprey-like inner ears. The role of Otx1 in the gnathostome ear is therefore highly conserved; otic Otx1 expression is likely to account not only for the gain of a third semicircular canal and crista in gnathostomes, but also for the separation of the zones of the single macula into distinct regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号