共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanosensory neurons which innervate the siphon and have their cell bodies in the LE cluster of the abdominal ganglion ofAplysia have revealed many cellular and molecular processes that may play general roles in learning and memory. It was initially
suggested that these cells are largely responsible for triggering the gill-withdrawal reflex evoked by weak siphon stimulation,
and that most of this effect is mediated by their monosynaptic connections to gill motor neurons. This implied a simple link
between plasticity at these synapses and modifications of the reflex during learning. We review more recent studies from several
laboratories showing that the LE cells are not activated by very weak tactile stimuli that elicit the gill-withdrawal reflex,
and that an unidentified population of siphon sensory neurons has lower mechanosensory thresholds and produces shorter latency
responses. Furthermore, the direct connections between LE cells and gill motor neurons make a minor contribution when the
reflex is elicited in pinned siphon preparations by light stimuli that weakly activate the LE cells. Because weak mechanical
stimulation of the unrestrained siphon causes little or no LE cell activation, it is unlikely that, under natural conditions,
sensitization or conditioning of reflex responses elicited by light siphon touch depends upon plasticity of LE cell synapses
onto either motor or interneurons.
The LE cells appear to function as nociceptors because they are tuned to noxious stimuli and, like mammalian nociceptors,
show peripheral sensitization following nociceptive activation. This sensitization and the profound activity-dependent potentiation
of LE synapses indicate that LE cell contributions to defensive reflexes should be largest during and after intense activation
of the LE cells by noxious stimulation (with the LE cell plasticity contributing to long-lasting memory of peripheral injury).
The LE sensory neurons offer special opportunities for direct tests of this and other hypotheses about specific mnemonic functions
of fundamental mechanisms of neural plasticity. 相似文献
2.
3.
目的:观察可卡因对痛阈和LHb痛相关神经元放电的影响。方法:皮下注射不同剂量可卡因,观察大鼠痛阈的变化;用玻璃微电极记录静脉注射可卡因前后,Hb神经元对伤害性刺激的反应。结果:低剂量可卡因降低大鼠痛阈;高剂量可卡因提高大鼠痛阈。静脉注射可卡因后,LHb痛兴奋单位自发放电增加,对痛的兴奋反应加强;LHb痛抑制单位自发放电减少,对痛的抑制反应减弱。结论:低剂量可卡因降低痛阈,同时提高LHb痛相关神经元的敏感性。 相似文献
4.
Sipin Zhu Yihe Li Samuel Bennett Junhao Chen Isabel Ziwai Weng Lin Huang Huazi Xu Jiake Xu 《Cell proliferation》2020,53(7)
Artemin (ARTN) is a member of the glial cell line‐derived neurotrophic factor (GDNF) family ligands (GFLs), which encompasses family members, GDNF, neurturin (NRTN) and persephin (PSPN). ARTN is also referred to as Enovin or Neublastin, and bears structural characteristics of the TGF‐β superfamily. ARTN contains a dibasic cleavage site (RXXR) that is predicted to be cleaved by furin to yield a carboxy‐terminal 113 amino acid mature form. ARTN binds preferentially to receptor GFRα3, coupled to a receptor tyrosine kinase RET, forming a signalling complex for the regulation of intracellular pathways that affect diverse outcomes of nervous system development and homoeostasis. Standard signalling cascades activated by GFLs via RET include the phosphorylation of mitogen‐activated protein kinase or MAPK (p‐ERK, p‐p38 and p‐JNK), PI3K‐AKT and Src. Neural cell adhesion molecule (NCAM) is an alternative signalling receptor for ARTN in the presence of GFRα1, leading to activation of Fyn and FAK. Further, ARTN also interacts with heparan sulphate proteoglycan syndecan‐3 and mediates non‐RET signalling via activation of Src kinases. This review discusses the role of ARTN in spinal cord injury, neuropathic pain and other neurological disorders. Additionally, ARTN plays a role in non‐neuron tissues, such as the formation of Peyer's patch‐like structures in the lymphoid tissue of the gut. The emerging role of ARTN in cancers and therapeutic resistance to cancers is also explored. Further research is necessary to determine the function of ARTN in a tissue‐specific manner, including its signalling mechanisms, in order to improve the therapeutic potential of ARTN in human diseases. 相似文献
5.
To investigate the role of brain-derived neurotrophic factor (BDNF) in differentiation of cranial sensory neurons in vivo, we analyzed development of nodose (NG), petrosal (PG), and vestibular (VG) ganglion cells in genetically engineered mice carrying null mutations in the genes encoding BDNF and the proapoptotic Bcl-2 homolog Bax. In bax(-/-) mutants, ganglion cell numbers were increased significantly compared to wild-type animals, indicating that naturally occurring cell death in these ganglia is regulated by Bax signaling. Analysis of bdnf(-/-)bax(-/-) mutants revealed that, although the Bax null mutation completely rescued cell loss in the absence of BDNF, it did not rescue the lethality of the BDNF null phenotype. Moreover, despite rescue of BDNF-dependent neurons by the bax null mutation, sensory target innervation was abnormal in double null mutants. Vagal sensory innervation to baroreceptor regions of the cardiac outflow tract was completely absent, and the density of vestibular sensory innervation to the cristae organs was markedly decreased, compared to wild-type controls. Moreover, vestibular afferents failed to selectively innervate their hair cell targets within the cristae organs in the double mutants. These innervation failures occurred despite successful navigation of sensory fibers to the peripheral field, demonstrating that BDNF is required locally for afferent ingrowth into target tissues. In addition, the bax null mutation failed to rescue expression of the dopaminergic phenotype in a subset of NG and PG neurons. These data demonstrate that BDNF signaling is required not only to support survival of cranial sensory neurons, but also to regulate local growth of afferent fibers into target tissues and, in some cells, transmitter phenotypic expression is required. 相似文献
6.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. Neurotrophic factors are crucial for the plasticity of central nervous system and may be involved in long-term responses to drug exposure. To study the effects of reduced GDNF on dopaminergic behaviour related to addiction, we compared the effects of morphine on locomotor activity, conditioned place preference (CPP) and extracellular accumbal dopamine in heterozygous GDNF knockout mice (GDNF+/-) with those in their wild-type (Wt) littermates. When morphine 30 mg/kg was administered daily for 4 days, tolerance developed towards its locomotor stimulatory action only in the GDNF+/- mice. A morphine 5 mg/kg challenge dose stimulated locomotor activity only in the GDNF+/- mice withdrawn for 96 h from repeated morphine treatment, whereas clear and similar sensitization of the locomotor response was seen after a 10 mg/kg challenge dose in mice of both genotypes. Morphine-induced CPP developed initially similarly in Wt and GDNF+/- mice, but it lasted longer in the Wt mice. The small challenge dose of morphine increased accumbal dopamine output slightly more in the GDNF+/- mice than in the Wt mice, but doubling the challenge dose caused a dose-dependent response only in the Wt mice. In addition, repeated morphine treatment counteracted the increase in the accumbal extracellular dopamine concentration we previously found in drug-naive GDNF+/- mice. Thus, reduced endogenous GDNF level alters the dopaminergic behavioural effects to repeatedly administered morphine, emphasizing the involvement of GDNF in the neuroplastic changes related to long-term effects of drugs of abuse. 相似文献
7.
Djalali S Höltje M Grosse G Rothe T Stroh T Grosse J Deng DR Hellweg R Grantyn R Hörtnagl H Ahnert-Hilger G 《Journal of neurochemistry》2005,92(3):616-627
Serotonergic neurones are among the first to develop in the central nervous system. Their survival and maturation is promoted by a variety of factors, including serotonin itself, brain-derived neurotrophic factor (BDNF) and S100beta, an astrocyte-specific Ca(2+) binding protein. Here, we used BDNF-deficient mice and cell cultures of embryonic raphe neurones to determine whether or not BDNF effects on developing serotonergic raphe neurones are influenced by its action on glial cells. In BDNF-/- mice, the number of serotonin-immunoreactive neuronal somata, the amount of the serotonin transporter, the serotonin content in the striatum and the hippocampus, and the content of 5-hydroxyindoleacetic acid in all brain regions analysed were increased. By contrast, reduced immunoreactivity was found for myelin basic protein (MBP) in all brain areas including the raphe and its target region, the hippocampus. Exogenously applied BDNF increased the number of MBP-immunopositive cells in the respective culture systems. The raphe area displayed selectively reduced immunoreactivity for S100beta. Accordingly, S100beta was increased in primary cultures of pure astrocytes by exogenous BDNF. In glia-free neuronal cultures prepared from the embryonic mouse raphe, addition of BDNF supported the survival of serotonergic neurones and increased the number of axon collaterals and primary dendrites. The latter effect was inhibited by the simultaneous addition of S100beta. These results suggest that the presence of BDNF is not a requirement for the survival and maturation of serotonergic neurones in vivo. BDNF is, however, required for the local expression of S100beta and production of MBP. Therefore BDNF might indirectly influence the development of the serotonergic system by stimulating the expression of S100beta in astrocytes and the production MBP in oligodendrocytes. 相似文献
8.
9.
Christine R. Matheson Josette Carnahan Janal L. Urich Dora Bocangel T. J. Zhang Qiao Yan 《Developmental neurobiology》1997,32(1):22-32
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997. 相似文献
10.
Decreased hippocampal brain‐derived neurotrophic factor and impaired cognitive function by hypoglossal nerve transection in rats 下载免费PDF全文
Doyun Kim Sena Chung Seung‐Hyun Lee Se‐Young Choi Soung‐Min Kim JaeHyung Koo Jong‐Ho Lee Jeong Won Jahng 《Journal of cellular and molecular medicine》2017,21(12):3752-3760
The hypoglossal nerve controls tongue movements, and damages of it result in difficulty in mastication and food intake. Mastication has been reported to maintain hippocampus‐dependent cognitive function. This study was conducted to examine the effect of tongue motor loss on the hippocampus‐dependent cognitive function and its underlying mechanism. Male Sprague Dawley rats were subjected to the initial training of Morris water maze task before or after the bilateral transection of hypoglossal nerves (Hx). When the initial training was given before the surgery, the target quadrant dwelling time during the probe test performed at a week after the surgery was significantly reduced in Hx rats relative to sham‐operated controls. When the initial training was given after the surgery, Hx affected the initial and reversal trainings and probe tests. Brain‐derived neurotrophic factor (BDNF) expression, cell numbers and long‐term potentiation (LTP) were examined in the hippocampus on the 10th day, and BrdU and doublecortin staining on the 14th day, after the surgery. Hx decreased the hippocampal BDNF and cells in the CA1/CA3 regions and impaired LTP. BrdU and doublecortin staining was decreased in the dentate gyrus of Hx rats. Results suggest that tongue motor loss impairs hippocampus‐dependent cognitive function, and decreased BDNF expression in the hippocampus may be implicated in its underlying molecular mechanism in relation with decreased neurogenesis/proliferation and impaired LTP. 相似文献
11.
Matsumoto Y Kanamoto K Kawakubo K Aomi H Matsumoto T Ibayashi S Fujishima M 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(5):G897-G903
Epidermal growth factor (EGF) has been shown to exert gastric hyperemic and gastroprotective effects via capsaicin-sensitive afferent neurons, including the release of calcitonin gene-related peptide (CGRP). We examined the protective and vasodilatory effects of EGF on the gastric mucosa and its interaction with sensory nerves, CGRP, and nitric oxide (NO) in anesthetized rats. Intragastric EGF (10 or 30 microg) significantly reduced gastric mucosal lesions induced by intragastric 60% ethanol (50.6% by 10 microg EGF and 70.0% by 30 microg EGF). The protective effect of EGF was significantly inhibited by pretreatment with capsaicin desensitization, human CGRP1 antagonist hCGRP-(8-37), or N(omega)-nitro-L-arginine methyl ester (L-NAME). Intravital microscopy showed that topically applied EGF (10-1,000 microg/ml) dilated the gastric mucosal arterioles dose dependently and that this vasodilatory effect was significantly inhibited by equivalent pretreatments. These findings suggest that EGF plays a protective role against ethanol-induced gastric mucosal injury, possibly by dilating the gastric mucosal arterioles via capsaicin-sensitive afferent neurons involving CGRP and NO mechanisms. 相似文献
12.
We have tested the hypothesis that larval neurones guide growth of adult sensory axons in Drosophila. We show that ablation of larval sensory neurones causes defects in the central projections of adult sensory neurones. Spiralling axons and ectopic projections indicate failure in axon growth guidance. We show that larval sensory neurones are required for peripheral pathfinding, entry into the CNS and growth guidance within the CNS. Ablation of subsets of neurones shows that larval sensory neurones serve specific guidance roles. Dorsal neurones are required for axon guidance across the midline, whereas lateral neurones are required for posterior growth. We conclude that larval sensory neurones pioneer the assembly of sensory arrays in adults. 相似文献
13.
A model is presented of competition between sensory axons for trophic molecules (e.g. a neurotrophin such as NGF), produced in a region of skin small enough to permit their free diffusion throughout it; e.g., a touch dome, or a vibrissal follicle hair sinus. The variables specified are the number of high affinity trophic factor receptors per axon terminal and the concentration of trophic factor in the extracellular space. Previous models of this class predicted the loss of all the axons innervating the region except the one requiring least trophic factor for its maintenance, even with high rates of trophic factor production. In the present model, we have imposed upper limits to axonal growth, thereby introducing new equilibria, and we show by a global analysis using LaSalle's theorem, and also by local analysis, that several axons can then coexist if the rate of production of trophic molecules is sufficiently high. 相似文献
14.
15.
Joong‐Jean Park Michelle Howell Adam Winseck Nancy G. Forger 《Developmental neurobiology》1999,41(3):317-325
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) innervate the perineal muscles, bulbocavernosus (BC), and levator ani (LA). Testosterone regulates the survival of SNB motoneurons and BC/LA muscles during perinatal life. Previous findings suggest that effects of testosterone on this system may be mediated by trophic factors—in particular, by a factor acting through the ciliary neurotrophic factor α‐receptor (CNTFRα). To test the role of CNTFRα in the response of the developing SNB system to testosterone, CNTFRα +/+ and −/− mice were treated with testosterone propionate (TP) or oil during late embryonic development. BC/LA muscle size and SNB motoneuron number were evaluated on the day of birth. Large sex differences in BC and LA muscle size were present in newborn mice of both genotypes, but muscle volumes were reduced in CNTFRα −/− animals relative to same‐sex, wild‐type controls. Prenatal testosterone treatment completely eliminated the sex difference in BC/LA muscle size in wild‐type animals, and eliminated the effect of the CNTFRα gene deletion on muscle size in males. However, the effect of TP treatment on BC and LA muscle sizes was blunted in CNTFRα −/− females. SNB motoneuron number was sexually dimorphic in oil‐treated, wild‐type mice. In contrast, there was no sex difference in SNB motoneuron number in oil‐treated, CNTFRα knockout mice. Prenatal treatment with testosterone did not increase SNB motoneuron number in CNTFRα −/− mice, but also did not significantly increase SNB motoneuron number in newborn wild‐type animals. These findings confirm the absence of a sex difference in SNB motoneuron number in CNTFRα −/− mice. Moreover, the CNTFRα gene deletion influences perineal muscle development and the response of the perineal muscles to testosterone. Prenatal TP treatment of CNTFRα −/− males overcomes the effects of the gene deletion on the BC and LA muscles without a concomitant effect on SNB motoneuron number. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 317–325, 1999 相似文献
16.
We used compartmented cultures to study the regulation of adult sensory neurite growth by neurotrophins. We examined the effects of the neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT3), and BDNF on distal neurite elongation from adult rat dorsal root ganglion (DRG) neurons. Neurons were plated in the center compartments of three-chambered dishes in the absence of neurotrophin, and neurite extension into the distal (side) compartments containing NGF, BDNF, or NT3 was quantitated. Initial proximal neurite growth did not require any of the neurotrophins, while subsequent elongation into distal compartments required NGF. After neurites had extended into NGF-containing distal compartments, removal of NGF by treatment with anti-NGF resulted in the cessation of growth with minimal neurite retraction. In contrast to the effects of NGF, no distal neurite elongation was observed into compartments with BDNF or NT3. To examine possible additive influences, neurite extension into compartments containing BDNF plus NGF or NT3 plus NGF was quantitated. There was no increased neurite extension into NGF plus NT3 compartments, while the combination of BDNF plus NGF resulted in an inhibition of neurite extension compared with NGF alone. We then investigated whether the regrowth of neurites that had originally grown into NGF subsequent to in vitro axotomy still required NGF. The results demonstrated that unlike adult sensory nerve regeneration in vivo, the in vitro regrowth did require NGF, and neither BDNF nor NT3 was able to substitute for NGF. Since the initial growth from neurons after dissociation (which is also a regenerative response) did not require NGF, it would appear that neuritic growth and regrowth of adult DRG neurons in vitro includes both NGF-independent and NGF-dependent components. The compartmented culture system provides a unique model to further study aspects of this differential regulation of neurite growth. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 395–410, 1997 相似文献
17.
Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice 总被引:6,自引:0,他引:6
Yajima Y Narita M Usui A Kaneko C Miyatake M Narita M Yamaguchi T Tamaki H Wachi H Seyama Y Suzuki T 《Journal of neurochemistry》2005,93(3):584-594
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice. 相似文献
18.
A van Ooyen D J Willshaw 《Proceedings. Biological sciences / The Royal Society》1999,266(1422):883-892
The development of nerve connections is thought to involve competition among axons for survival promoting factors, or neurotrophins, which are released by the cells that are innervated by the axons. Although the notion of competition is widely used within neurobiology, there is little understanding of the nature of the competitive process and the underlying mechanisms. We present a new theoretical model to analyse competition in the development of nerve connections. According to the model, the precise manner in which neurotrophins regulate the growth of axons, in particular the growth of the amount of neurotrophin receptor, determines what patterns of target innervation can develop. The regulation of neurotrophin receptors is also involved in the degeneration and regeneration of connections. Competition in our model can be influenced by factors dependent on and independent of neuronal electrical activity. Our results point to the need to measure directly the specific form of the regulation by neurotrophins of their receptors. 相似文献
19.
A Chalazonitis J Kalberg D R Twardzik R S Morrison J A Kessler 《Developmental biology》1992,152(1):121-132
Transforming growth factor beta (TGF beta) influences the growth and differentiation of a wide variety of nonneuronal cells (nnc) during embryogenesis and in response to wounding. In the present study TGF beta 1 and TGF beta 2 were examined for their neurotrophic actions on neonatal rat dorsal root ganglion (DRG) neurons with ganglionic nnc in dissociated cultures. TGF beta 1 and TGF beta 2 each increased both neuronal survival and levels of the peptide neurotransmitter substance P (SP) expressed per neuron as well as per culture. TGF beta 1 was maximally effective at a concentration of 40 pM, whereas TGF beta 2 was about 10-fold less potent. Survival effects promoted by simultaneous treatment with both factors were not additive. TGF beta 1 also changed the morphology and distribution of DRG nnc which resulted in clustering of DRG neurons on top of the nnc. Cotreatment of the cultures with two different anti-nerve growth factor (NGF) antibodies eliminated the neurotrophic effects of TGF beta 1. However, treatment with TGF beta 1 did not alter NGF mRNA expression in the cultures nor did it change the amount of NGF in the medium. Further, TGF beta 1 greatly enhanced survival effects and SP stimulation promoted by exogenous NGF at concentrations up to 100 ng/ml. The neurotrophic effects of TGF beta 1 were significantly attenuated by decreasing the proportion of the ganglionic nnc, suggesting a role for these cells in mediating TGF beta 1 action on the neurons. It is hypothesized that the neurotrophic activity of TGF beta depended upon the presence of molecules immunologically related to NGF and that the effects of TGF beta were synergistic with NGF. These observations suggest that TGF beta may play a role in the differentiation and regeneration of DRG neurons in vivo. 相似文献
20.
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA‐HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking‐like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 相似文献