首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TEA domain: a novel, highly conserved DNA-binding motif   总被引:16,自引:0,他引:16  
T R Bürglin 《Cell》1991,66(1):11-12
  相似文献   

2.
The recently described THAP domain motif characterizes a DNA-binding domain (DBD) that is widely conserved in human and in animals. It presents a similarity with the DBD of the P element transposase of D. melanogaster. We show here that the P Drosophila neogenes derived from P-transposable elements conserve the THAP domain. Moreover, secondary rearrangements by exon shuffling indicate the recurrent recruitment of this domain by the host genome. As P sequences and THAP genes are found together in many animal genomes, we discuss the possibility that the THAP proteins have acquired their domain as a result of recurrent molecular domestication of P-transposable elements.  相似文献   

3.
The autonomous MuDR element of the Mutator (Mu) transposable element family of maize encodes at least two proteins, MURA and MURB. Based on amino acid sequence similarity, previous studies have reported that MURA is likely to be a transposase. The functional characterization of MURA has been hindered by the instability of its cDNA, mudrA, in Escherichia coli. In this study, we report the first successful stabilization and expression of MURA in Saccharomyces cerevisiae. Gel mobility shift assays demonstrate that MURA is a DNA-binding protein that specifically binds to sequences within the highly conserved Mu element terminal inverted repeats (TIRs). DNase I and 1,10-phenanthroline-copper footprinting of MURA-Mu1 TIR complexes indicate that MURA binds to a conserved approximately 32-bp region in the TIR of Mu1. In addition, MURA can bind to the same region in the TIRs of all tested actively transposing Mu elements but binds poorly to the diverged Mu TIRs of inactive elements. Previous studies have reported a correlation between Mu transposon inactivation and methylation of the Mu element TIRs. Gel mobility shift assays demonstrate that MURA can interact differentially with unmethylated, hemimethylated, and homomethylated TIR substrates. The significance of MURA's interaction with the TIRs of Mu elements is discussed in the context of what is known about the regulation and mechanisms of Mutator activities in maize.  相似文献   

4.
5.
6.
The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.  相似文献   

7.
Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site‐specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP‐binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP‐binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP‐binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP‐binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N‐terminal THAP DNA‐binding domain attached to an extended leucine zipper coiled‐coil dimerization domain in the P element transposase, precisely delineating the DNA‐binding and dimerization activities on the primary sequence. This study highlights the use of a GFP‐based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions.  相似文献   

8.
Transposase activity that mediates the mobility of class II transposable elements, is most commonly initiated by the assembly of higher order synaptic complexes, called transpososomes. The formation of these complexes, that contain the transposable element's DNA as well as two or more molecules of the transposase, is dependent on interactions between transposase molecules. Using the yeast Two-Hybrid system, we were able to identify three regions mediating multimerization of the Hermes transposase, an element used for germline transformation of insects belonging to the hAT family of transposable elements. One region facilitating protein binding of Hermes transposase molecules was found within the first 252 amino acids of the transposase. The second region was located at the C-terminus of the transposase, and was found to be specific for Hermes transposase multimerization. Amino acids 551-569 were not only required for multimerization but were also necessary for transposition of the element. The third region was located between amino acids 253 and 380 and was found to eliminate the non-specific protein binding ability of the N-terminal protein interaction region but was required for the specific protein binding ability of the C-terminal region of the transposase. Five point mutations affecting the structural integrity of the C-terminal multimerization region abolished or significantly reduced transpositional activity. The same region had been previously identified to mediate dimerization in Activator (Ac), another hAT element, indicating that hAT transposase multimerization is likely to be a prerequisite for mobility of their elements.  相似文献   

9.
10.
We have previously reported that the 13 kDa amino terminus of the 70 kDa bacteriophage D108 transposase protein (A gene product) contains a two-component, sequence-specific DNA-binding domain which specifically binds to the related bacteriophage Mu's right end (attR) in vitro. To extend these studies, we examined the ability of the 13 kDa amino terminus of the Mu transposase protein to bind specifically to Mu attR in crude extracts. Here we report that the Mu transposase protein also contains a Mu attR specific DNA-binding domain, located in a putative alpha-helix-turn-alpha-helix region, in the amino terminal 13 kDa portion of the 70 kDa transposase protein as part of a 23 kDa fusion protein with beta-lactamase. We purified for this attR-specific DNA-binding activity and ultimately obtained a single polypeptide of the predicted molecular weight for the A'--'bla fusion protein. We found that the pure protein bound to the Mu attR site in a different manner compared with the entire Mu transposase protein as determined by DNase I-footprinting. Our results may suggest the presence of a potential primordial DNA-binding site (5'-PuCGAAA-3') located several times within attR, at the ends of Mu and D108 DNA, and at the extremities of other prokaryotic class II elements that catalyze 5 base pair duplications at the site of element insertion. The dissection of the functional domains of the related phage Mu and D108 transposase proteins will provide clues to the mechanisms and evolution of DNA transposition as a mode of mobile genetic element propagation.  相似文献   

11.
Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia. The GCM protein contains the functional domain that is essential for recognition of the upstream sequence of the repo gene. In the DNA-binding region of this GCM protein, there is a cysteine-rich region with which divalent metal ions such as Zn(2+) must bind and other proteins belonging to the GCM family have a corresponding region. To obtain a more detailed insight into the structural and functional features of this DNA-binding region, we have determined the minimal DNA-binding domain and obtained inductively coupled plasma atomic emission spectra and (1)H-(15)N, (1)H-(15)N-(13)C and (113)Cd(2+) NMR spectra, with or without its specific DNA molecule. Considering the results, it was concluded that the minimal DNA-binding domain includes two Zn(2+)-binding sites, one of which is adjacent to the interface for DNA binding. Systematic mutational analyses of the conserved cysteine residues in the minimal DNA-binding domain revealed that one Zn(2+)-binding site is indispensable for stabilization of the higher order structure of this DNA-binding domain, but that the other is not.  相似文献   

12.
13.
S Misra  D C Rio 《Cell》1990,62(2):269-284
Drosophila P transposable elements encode two proteins, an 87 kd transposase protein and a 66 kd protein that has been hypothesized to repress transposition. We have made germline transformants carrying modified P element derivatives that encode only the 66 kd protein and shown that these elements repress transposase activity in both the germline and the soma. The position of these elements in the genome quantitatively affected their ability to negatively regulate transposase and to express the 66 kd protein. Single 66 kd element-containing strains did not exhibit the maternal inheritance of P cytotype characteristic of P strains. However, we demonstrated that a true P strain produced higher levels of the 66 kd protein during oogenesis than single 66 kd P elements. Thus, the expression of the 66 kd repressor during oogenesis may be a major determinant of the maternal effect of P cytotype.  相似文献   

14.
The transposase (A protein) of phage Mu encodes binding to two families of DNA sites, att sites located at the Mu ends and enhancer sites located internally. Separate subdomains in the N-terminal domain I of Mu A protein are known to be involved in recognition of the att and enhancer sites. We have delineated an approximately 135 aa region within domain I beta gamma that specifies binding to Mu att sites. This peptide was overexpressed and its properties compared with that of the larger domain I beta gamma as well as the intact Mu A protein. Extensive mutagenesis of residues around a putative helix-turn-helix DNA-binding motif within the I beta domain identified several mutants defective in DNA transposition in vivo. Of these, Mu A(K157Q) was completely defective in att DNA-binding. Mu A(F131S) and Mu A(R146N) had a lower affinity for att DNA and low levels of transposition in vitro. Our results indicate that residues in the gamma region are required for activity and that residues outside the beta gamma region must also influence discrimination between the multiple att sites.  相似文献   

15.
16.
17.
18.
S Feldmar  R Kunze 《The EMBO journal》1991,10(13):4003-4010
Ac encodes the 807 amino acid ORFa protein which binds specifically to multiple AAACGG motifs that are subterminally located in both ends of Ac. The wild-type ORFa protein and a number of deletion and amino acid exchange mutants were expressed in Escherichia coli, renatured and used for mobility shift assays. At least 136 amino acids from the N-terminus and 537 C-terminal amino acids may be removed from the ORFa protein without destroying the DNA binding domain, whereas a protein starting at amino acid 189 is DNA binding deficient. Certain basic amino acids between positions 190 and 200 are essential for DNA binding, as their substitution with uncharged amino acids leads to the loss of this function. The DNA binding domain of ORFa protein has an overall basic character, but no obvious sequence homology to any other known DNA binding protein. The homologies to the major open reading frames of transposable elements Tam3 from Antirrhinum majus and Hobo from Drosophila are found between the C-terminal two thirds of the three proteins. The ORFa protein forms discrete complexes with target DNA that appear, depending on the protein concentration, as a 'ladder' of bands on gels, indicating the occupation of target DNA by multiple ORFa protein molecules.  相似文献   

19.
PB1 domains are novel protein modules capable of binding to target proteins that contain PC motifs. We report here the NMR structure and ligand-binding site of the PB1 domain of the cell polarity establishment protein, Bem1p. In addition, we identify the topology of the PC motif-containing region of Cdc24p by NMR, another cell polarity establishment protein that interacts with Bem1p. The PC motif-containing region is a structural domain offering a scaffold to the PC motif. The chemical shift perturbation experiment and the mutagenesis study show that the PC motif is a major structural element that binds to the PB1 domain. A structural database search reveals close similarity between the Bem1p PB1 domain and the c-Raf1 Ras-binding domain. However, these domains are functionally distinct from each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号