共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene Regulation in N Mutants of Bacteriophage λ 总被引:1,自引:1,他引:1
Mutants (N(-)nin) of bacteriophage lambda in which the N gene product is not required for growth on wild-type Escherichia coli do not plate on recA bacterial mutants. Secondary mutants, selected for growth on recA, lie within the immunity region to the right of gene cI and appear identical to the cro mutants of Eisen et al. In an N(+) phage, a cro mutation causes enhanced and prolonged production of lambda exonuclease. N(-)cro phages make no detectable exonuclease, but show an increased rate of specific excision from lysogens and are excluded by P2 prophage. These properties, together with the ability to plate on recA, suggest that N(-)cro phages express genes to the left of N at a rate that is very low but higher than that for N(-)cro(+) phages. N(-)nin phages can integrate at the normal site on the bacterial chromosome, but specific excision from lysogens is immeasurably low. 相似文献
2.
Preparation of Plasmid λdv from Bacteriophage λ: Role of Promoter-Operator in the Plasmid Replicon 总被引:1,自引:2,他引:1 下载免费PDF全文
Kenichi Matsubara 《Journal of virology》1974,13(3):596-602
A technique has been described for selection of bacteria carrying plasmid lambdadv. With this technique, the effects of mutations in the promoter-operators were compared on the production and perpetuation of the plasmid. It was found that "left" promoter-operator that controls leftward gene expressions can be deleted from the plasmid genome. Some mutations of "right" promoter-operator (pRoR) that controls expression of genes tof, O, and P affect the stability of the plasmid. However, the plasmid genome accomodates a variety of pRoR mutations within a reasonable but different degree of constitutivity. Some new promoter mutations that allow bypass of the pRoR cannot be carried in the plasmid genome. From these findings it was proposed that the plasmid replicon has one indispensable promoter-operator that controls expression of all the genes related to its own replication, although a variety of constitutive mutations can be accommodated in the pRorR. 相似文献
3.
By studying complementation between frameshift and nonsense mutants located in the structural genes for the head of bacteriophage lambdai434, we found mutations in gene B which are polar on genes C and D and one mutation in gene E which is polar on gene F. 相似文献
4.
On the Nature of CIS-Acting Regulatory Proteins and Genetic Organization in Bacteriophage: The Example of Gene Q of Bacteriophage λ 下载免费PDF全文
We note the existence of a "partially cis-acting" regulatory protein of bacteriophage λ: the product of the phage Q gene. We suggest that there may be a complete spectrum from "all cis" to "all trans" for such regulatory proteins. This behavior might arise because a DNA-binding protein either acts at a nearby (cis) site soon after synthesis or becomes "lost" for its trans activity on another genome through nonspecific interactions with DNA. Our proposed explanation provides one evolutionary basis for the linkage of genes for regulatory proteins and the sites at which such proteins act; it also suggests a possible rationale for the "metabolic instability" of certain regulatory proteins. 相似文献
5.
Kazuko Matsubara Ali D. Malay Fiona A. Curtis Gary J. Sharples Jonathan G. Heddle 《PloS one》2013,8(11)
The Red system of bacteriophage λ is responsible for the genetic rearrangements that contribute to its rapid evolution and has been successfully harnessed as a research tool for genome manipulation. The key recombination component is Redβ, a ring-shaped protein that facilitates annealing of complementary DNA strands. Redβ shares functional similarities with the human Rad52 single-stranded DNA (ssDNA) annealing protein although their evolutionary relatedness is not well established. Alignment of Rad52 and Redβ sequences shows an overall low level of homology, with 15% identity in the N-terminal core domains as well as important similarities with the Rad52 homolog Sak from phage ul36. Key conserved residues were chosen for mutagenesis and their impact on oligomer formation, ssDNA binding and annealing was probed. Two conserved regions were identified as sites important for binding ssDNA; a surface basic cluster and an intersubunit hydrophobic patch, consistent with findings for Rad52. Surprisingly, mutation of Redβ residues in the basic cluster that in Rad52 are involved in ssDNA binding disrupted both oligomer formation and ssDNA binding. Mutations in the equivalent of the intersubunit hydrophobic patch in Rad52 did not affect Redβ oligomerization but did impair DNA binding and annealing. We also identified a single amino acid substitution which had little effect on oligomerization and DNA binding but which inhibited DNA annealing, indicating that these two functions of Redβ can be separated. Taken together, the results provide fresh insights into the structural basis for Redβ function and the important role of quaternary structure. 相似文献
6.
7.
8.
9.
Fiona M. Ellard Andres Cabello George P. C. Salmond 《Molecular & general genetics : MGG》1989,218(3):491-498
Summary Using transformation and conjugal mobilization, plasmids carrying the lamB gene of Escherichia coli were transferred to a range of Erwinia strains. The resultant strains were infected with 467, and kanamycin resistant transductants were screened for various mutant phenotypes including auxotrophy and altered extracellular enzyme activities. Reversion analysis suggested that most mutant phenotypes were due to Tn5 insertion. The applicability of the techniques was highly strain dependent. However a rapid and simple route to mutant isolation was obtained, which could allow the use of other -related genetic techniques in several important species which, to date, have not been genetically manipulated. 相似文献
10.
Temperature-sensitive mutants of phage alpha were obtained by means of various mutagens and assigned to 25 complementation groups. Temperature-sensitive mutants belonging to 21 complementation groups and a mutant giving turbid plaques were used to perform two- and three-factor crosses. Seventeen of the cistrons and the turbid mutant were shown to belong to the same linear linkage group, which showed no signs of circularity. The remaining four unlinked cistrons showed peculiarities in their recombination properties. Genes which are known to be expressed earlier apear to be grouped together in a terminal segment of the linkage group. 相似文献
11.
From a stock of varkappa phage grown on Salmonella, a host-range mutant which attacks Escherichia coli was isolated. As in the case of Salmonella, only motile strains of E. coli are sensitive to varkappa. The phage shows an eclipse period of 35 min and a minimal latent period of 52 min. The adsorption rate constant is 3 x 10(-9) ml/min. Adsorption shows a marked dependence on temperature. Bacteriophage varkappa was purified by differential centrifugation and CsCl density gradient centrifugation. It contains deoxyribonucleic acid (DNA) which is double-stranded. The DNA has a molecular weight of 42 million and a guanine plus cytosine content of 57%. Of 68 molecules of DNA inspected, 7 were circular. The phage particle weight is about 90 million. 相似文献
12.
DNA polymerase (pol) λ, one of the 15 cellular pols, belongs to the X family. It is a small 575 amino-acid protein containing a polymerase, a dRP-lyase, a proline/serine rich and a BRCT domain. Pol λ shows various enzymatic activities including DNA polymerization, terminal transferase and dRP-lyase. It has been implicated to play a role in several DNA repair pathways, particularly base excision repair (BER), non-homologous end-joining (NHEJ) and translesion DNA synthesis (TLS). Similarly to other DNA repair enzymes, pol λ undergoes posttranslational modifications during the cell cycle that regulate its stability and possibly its subcellular localization. Here we describe our knowledge about ubiquitylation of pol λ and the impact of this modification on its regulation. 相似文献
13.
RNA Synthesis Startpoints in Bacteriophage λ: Are the Promoter and Operator Transcribed? 总被引:25,自引:0,他引:25
Hybridization and fingerprint analysis of in vitro synthesized λ RNA shows that four chains are initiated at sites corresponding to those seen in vivo and that each molecule starts with a specific sequence. In one case examined, the major leftward operon, the promoter and operator and not transcribed into RNA. 相似文献
14.
A key event in development is the irreversible commitment to a particular cell fate, which may be concurrent with or delayed with respect to the initial cell fate decision. In this work, we use the paradigmatic bacteriophage λ lysis-lysogeny decision circuit to study the timing of commitment. The lysis-lysogeny decision is made based on the expression trajectory of CII. The chosen developmental strategy is manifested by repression of the pR and pL promoters by CI (lysogeny) or by antitermination of late gene expression by Q (lysis). We found that expression of Q in trans from a plasmid at the time of infection resulted in a uniform lytic decision. Furthermore, expression of Q up to 50 min after infection results in lysis of the majority of cells which initially chose lysogenic development. In contrast, expression of Q in cells containing a single chromosomal prophage had no effect on cell growth, indicating commitment to lysogeny. Notably, if the prophage was present in 10 plasmid-borne copies, Q expression resulted in lytic development, suggesting that the cellular phage chromosome number is the critical determinant of the timing of lysogenic commitment. Based on our results, we conclude that (i) the lysogenic decision made by the CI-Cro switch soon after infection can be overruled by ectopic Q expression at least for a time equivalent to one phage life cycle, (ii) the presence of multiple λ chromosomes is a prerequisite for a successful Q-mediated switch from lysogenic to lytic development, and (iii) phage chromosomes within the same cell can reach different decisions. 相似文献
15.
16.
17.
18.
ALINA TAYLOR 《Nature: New biology》1971,234(48):144-145
JACOB and Fuerst1,2 demonstrated the presence of a bacteriolytic enzyme (λ-endolysin) in the induced cultures of lysogenic Escherichia coli K12 (λ). The enzyme was later identified as the product of gene R; of phage λ3 which is involved in bacterial lysis at the end of a latent period. The enzyme is apt to form spheroplast-like structures in E. coli2 and one would therefore expect its substrate to be murein. 相似文献
19.
20.