首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies elicited by immunization with mumps virus glycoproteins were selected with either native or chymotrypsin-treated mumps virus in an enzyme-linked immunosorbent assay. Group I antibodies which preferentially recognized chymotrypsin-treated virus failed to recognize native mumps virus hemagglutinin-neuraminidase (HN). They did react with sodium dodecyl sulfate-denatured HN and the HN chymotryptic fragments HNc2' (molecular weight, 41,000) and HNc1 (molecular weight, 32,000) after transfer to nitrocellulose paper. In contrast, group II antibodies, which preferentially recognized native virus in the enzyme-linked immunosorbent assay, reacted with native HN but failed to bind HN after sodium dodecyl sulfate denaturation. These two groups of monoclonal antibodies were used to define the maturation pathway of the mumps virus HN in infected cells. The HN initially appeared as a 76,000-molecular-weight polypeptide and was recognized only by group I antibodies. A truncated form of HN, HNT (molecular weight, 63,000), was synthesized in the presence of tunicamycin and was also recognized only by group I antibodies. The 76,000-molecular-weight HN was rapidly converted to a 74,000-molecular-weight polypeptide; this form of HN was recognized only by group II antibodies. The oligosaccharide side chains were modified, and intermolecular disulfide bonds were formed as HN was transported to the cell surface. The disulfide-linked oligomers of HN were direct precursors of the HN found in mature virus.  相似文献   

2.
The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40–substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40–substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.  相似文献   

3.
Newcastle disease virus (NDV), an avian paramyxovirus, initiates infection with attachment of the viral hemagglutinin-neuraminidase (HN) protein to sialic acid-containing receptors, followed by fusion of viral and cell membranes, which is mediated by the fusion (F) protein. Like all class 1 viral fusion proteins, the paramyxovirus F protein is thought to undergo dramatic conformational changes upon activation. How the F protein accomplishes extensive conformational rearrangements is unclear. Since several viral fusion proteins undergo disulfide bond rearrangement during entry, we asked if similar rearrangements occur in NDV proteins during entry. We found that inhibitors of cell surface thiol/disulfide isomerase activity--5'5-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin, and anti-protein disulfide isomerase antibody--inhibited cell-cell fusion and virus entry but had no effect on cell viability, glycoprotein surface expression, or HN protein attachment or neuraminidase activities. These inhibitors altered the conformation of surface-expressed F protein, as detected by conformation-sensitive antibodies. Using biotin maleimide (MPB), a reagent that binds to free thiols, free thiols were detected on surface-expressed F protein, but not HN protein. The inhibitors DTNB and bacitracin blocked the detection of these free thiols. Furthermore, MPB binding inhibited cell-cell fusion. Taken together, our results suggest that one or several disulfide bonds in cell surface F protein are reduced by the protein disulfide isomerase family of isomerases and that F protein exists as a mixture of oxidized and reduced forms. In the presence of HN protein, only the reduced form may proceed to refold into additional intermediates, leading to the fusion of membranes.  相似文献   

4.
The virion proteins and genomic RNA of human parainfluenza virus 3 have been characterized. The virion contains seven major and two minor proteins. Three proteins of 195 X 10(3) molecular weight (195K), 87K, and 67K are associated with the nucleocapsid of the virion and have been designated L, P, and NP, respectively. Three proteins can be labeled with [14C]glucosamine and have molecular weights of 69K, 60K, and 46K. We have designated these proteins as HN, F0, and F1, respectively. HN protein has interchain disulfide bonds, but does not participate in disulfide bonding to form homomultimeric forms. F1 appears to be derived from a complex, F1,2, that has an electrophoretic mobility similar to that of F0 under nonreducing conditions. A protein of 35K is associated with the envelope components of the virion and aggregates under low-salt conditions; this protein has been designated M. The genome of human parainfluenza virus 3 is a linear RNA molecule with a molecular weight of approximately 4.6 X 10(6).  相似文献   

5.
Reduction of proteins which require disulfide bonds to be stable in the folded state is accompanied by step-wise unfolding. A soluble human interferon gamma receptor produced in Escherichia coli was used to investigate the kinetics of formation of unfolding intermediates. The protein includes 8 cysteine residues forming four disulfide bonds. It was reduced by using either dithiothreitol or the thioredoxin reduction system. Reduction with dithiothreitol resulted in formation of mainly four monomeric unfolding species as visualized by sodium dodecyl sulfate-polyacrylamide gels. The enzymatically catalyzed reaction produced only small amounts of two monomeric products and mostly delivered oligomeric and polymeric forms. In both cases, the ligand binding capacity of the receptor was significantly reduced immediately after appearance of the first intermediate. The intermediates involved interchange of disulfide bonds and did not show ligand binding capacity. Some of them were recognized by specific antibodies which detect conformational epitopes on the native interferon gamma receptor. On the basis of the antibody binding, a preliminary characterization of the formed intermediates was attempted. When the soluble receptor was reduced in the presence of denaturing agents, the reduction products were different from the unfolding intermediates generated in the absence of denaturants.  相似文献   

6.
Plasma protein S-sulfonate compounds (RS-SO-3) have previously been shown to form, presumably by sulfitolysis of disulfide bonds, as a result of exposure to sulfite. In the investigations reported here, we identify two proteins in rabbit plasma, namely albumin and plasma fibronectin, which contain reactive sites for S-sulfonate formation. Separation and identification of these proteins following in vitro and in vivo exposure to sulfite was accomplished primarily by column chromatographic and electrophoretic techniques. In addition, the structure of presumed S-sulfonate groups was confirmed by the identification of cysteinyl-S-sulfonate residues in protein hydrolysates generated by enzymatic digestion. The molar ratio of RS-SO-3 in both albumin and plasma fibronectin was less than one. Data from our experiments suggest that the mixed disulfide site of non- mercaptalbumin is the reactive site for S-sulfonate formation. The site(s) of formation within the plasma fibronectin molecule was not investigated. The possible physiological significance of disulfide sulfitolysis of albumin and plasma fibronectin is discussed.  相似文献   

7.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

8.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

9.

Background  

Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes.  相似文献   

10.
Eighteen hybridoma lines obtained by immunization of mice with Newcastle disease virus (NDV) lentogenic strain La Sota or velogenic strain Italien produced hemagglutinating monoclonal antibodies. The 18 monoclones were divided into four groups according to their reactivity toward native hemagglutinin neuraminidase protein (HN), nonglycosylated HN precursor, and heat-denatured HN blotted on nitrocellulose membranes. Only group II reagents were reactive toward their targets in all conditions tested. They were considered sequence-specific antibodies. Group I antibodies did not require glycosylation but lacked reactivity towards the denatured glycosylated antigen. Monoclonal antibodies from group III recognized only the native HN. Group IV was made up of a single monoclone that lacked reactivity with NDV Italien but recognized the La Sota strain in hemagglutination inhibition and enzyme-linked immunosorbent assays. Five hybridoma lines produced monoclonal antibodies which neutralized viral infectivity but failed to inhibit hemagglutination. One monoclonal antibody obtained after immunization of mice with NDV La Sota showed a low neutralization index versus NDV Italien. Four monoclonal antibodies derived from mice immunized with NDV Italien showed higher neutralization indices towards this strain. Neither the denatured F protein nor its nonglycosylated precursor was reacted against by the five monoclonal antibodies.  相似文献   

11.
Aggregate formation and the structure of the aggregates of disulfide-reduced proteins were investigated using -lactalbumin and lysozyme as model proteins. First, reducing conditions were adjusted so that only one of the four disulfide bonds present in each native protein was cleaved. These three-disulfide (3SS) proteins are known to adopt almost native conformations, yet formed precipitates with a basic peptide, lactoferricin, and heparin and heparin fragment, respectively, at concentrations at which native proteins mixed with these compounds remained clear. The 3SS-lysozyme also formed precipitates in the absence of these ligands. Thus, subtle structural changes could lead to aggregation. Electron microscopy revealed fibrillar structures in the aggregates of extensively reduced proteins in the absence of ligands but not in their presence, which shows that the reduction of disulfide bonds suffices for fibril formation and that ligands inhibit fibril formation.  相似文献   

12.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

13.
Newcastle disease virus (NDV) entry into host cells is mediated by the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. We previously showed that production of free thiols in F protein is required for membrane fusion directed by F protein (S. Jain et al., J. Virol. 81:2328-2339, 2007). In the present study we evaluated the oxidation state of F protein in virions and virus-like particles and its relationship to activation of F protein by HN protein, F protein conformational intermediates, and virus-cell fusion. F protein, in particles, does not have free thiols, but free thiols were produced upon binding of particles to target cells. Free thiols were produced at 16°C in F protein in virions bound to the target cells. They also appeared in different fusion defective mutant F proteins. Free thiols were produced in the presence of mutant HN proteins that are defective in F protein activation but are attachment competent. These results suggest that free thiols appear prior to any of the proposed major conformational changes in F protein which accompany fusion activation. These results also indicate that HN protein binding to its receptor likely facilitates the interaction between F protein and host cell isomerases, leading to reduction of disulfide bonds in F protein. Taken together, these results show that free thiols are produced in F protein at a very early stage during the onset of fusion and that the production of free thiols is required for fusion in addition to activation by HN protein.  相似文献   

14.
The promotion of membrane fusion by Newcastle disease virus (NDV) requires an interaction between the viral hemagglutinin-neuraminidase (HN) and fusion (F) proteins, although the mechanism by which this interaction regulates fusion is not clear. The NDV HN protein exists as a tetramer composed of a pair of dimers. Based on X-ray crystallographic studies of the NDV HN globular domain (S. Crennell et al., Nat. Struct. Biol. 7:1068-1074, 2000), it was proposed that the protein undergoes a significant conformational change from an initial structure having minimal intermonomeric contacts to a structure with a much more extensive dimer interface. This conformational change was predicted to be integral to fusion promotion with the minimal interface form required to maintain F in its prefusion state until HN binds receptors. However, no evidence for such a conformational change exists for any other paramyxovirus attachment protein. To test the NDV model, we have engineered a pair of intermonomeric disulfide bonds across the dimer interface in the globular domain of an otherwise non-disulfide-linked NDV HN protein by the introduction of cysteine substitutions for residues T216 and D230. The disulfide-linked dimer is formed both intracellularly and in the absence of receptor binding and is efficiently expressed at the cell surface. The disulfide bonds preclude formation of the minimal interface form of the protein and yet enhance both receptor-binding activity at 37 degrees C and fusion promotion. These results confirm that neither the minimal interface form of HN nor the proposed drastic conformational change in the protein is required for fusion.  相似文献   

15.
G Mottet  A Portner    L Roux 《Journal of virology》1986,59(1):132-141
The immunoreactivity of the Sendai virus HN and F0 glycoproteins was shown to mature before reaching the final form exhibited by the native mature proteins. The maturation process differed for the two proteins. The native F0 immunoreactivity was shown to be defined cotranslationally, and the addition of high-mannose sugar residues may represent the final step in defining the maturation of immunoreactivity. On the other hand, native HN immunoreactivity was slowly fashioned during the hour after the completion of protein synthesis. Although addition of high-mannose sugar could constitute a necessary step in this slow maturation process, it was shown not to be sufficient. Processing of high-mannose sugars and HN self-association in homodimers and homotetramers were investigated as possible steps involved in the slow maturation of HN immunoreactivity. They were found not to play a significant role. On the other hand, conformational changes presumably took place during the maturation of HN immunoreactivity. Drastic immunoreactivity differences were also demonstrated between the native and denatured forms of the glycoproteins. Possible implications of these results in defining the pathways of glycoprotein synthesis are discussed.  相似文献   

16.
Nonnative disulfide bond formation can play a critical role in the assembly of disulfide bonded proteins. During the folding and assembly of the P22 tailspike protein, nonnative disulfide bonds form both in vivo and in vitro. However, the mechanism and identity of cysteine disulfide pairs remains elusive, particularly for P22 tailspike, which contains no disulfide bonds in its native, functional form. Understanding the interactions between cysteine residues is important for developing a mechanistic model for the role of nonnative cysteines in P22 tailspike assembly. Prior in vivo studies have suggested that cysteines 496, 613, and 635 are the most likely site for sulfhydryl reactivity. Here we demonstrate that these three cysteines are critical for efficient assembly of tailspike trimers, and that interactions between cysteine pairs lead to productive assembly of native tailspike.  相似文献   

17.
The posttranslational maturation of the hemagglutinin-neuraminidase (HN) glycoprotein of human parainfluenza type 3 virus (PIV3) was investigated in pulse-chase experiments in which folding was monitored by immunoprecipitation with conformation-dependent antibodies and gel electrophoresis under nonreducing conditions and oligomerization was monitored by chemical cross-linking and sedimentation in sucrose gradients. The acquisition of mature immunoreactivity and the formation of correct intramolecular disulfide bonds were concurrent events, with half-times of approximately 10 to 15 min. The finding that newly synthesized HN had little reactivity with postinfection cotton rat serum or with most of the members of a panel of HN-specific monoclonal antibodies indicated that the major epitopes of the PIV3 HN protein are highly conformational in nature. Chemical cross-linking studies indicated that the mature HN protein is present in homoligomers, which are probably tetramers. These findings are consistent with recent observations for the HN protein of Sendai virus (S.D. Thompson, W.G. Laver, K.G. Murti, and A. Portner, J. Virol. 62:4653--4660, 1988; S. Vidal, G. Mottet, D. Kolakofsky, and L. Roux, J. Virol. 63:892--900, 1989). Surprisingly, analysis of pulse-labeled HN protein by sedimentation on sucrose gradients after labeling periods of as little as 2 min indicated that it was present intracellularly only in oligomeric form. The same results were obtained when the labeling period was preceded by a 1.5-h cycloheximide treatment to clear the endoplasmic reticulum of presynthesized HN protein, which indicated that the oligomerization did not involve the incorporation of newly synthesized monomers into partially assembled oligomers. Subsequent chase incubations did not significantly alter the sedimentation profile or stability of the oligomeric forms, suggesting that oligomers detected after short labeling periods were tetramers. Association with cellular proteins did not appear to be responsible for the sedimentation of newly synthesized HN protein as an oligomer. The absence of a detectable monomeric form of intracellular HN protein raised the possibility that oligomerization is cotranslational, and it is possible that the type II membrane orientation of the HN protein might be an important factor in its mode of oligomerization.  相似文献   

18.
The expression, folding, and characterization of a series of small proteins with increasingly complex disulfide bond patterns were characterized. A phagemid was prepared from the pT7-7 plasmid to facilitate mutagenic studies with these proteins. cDNAs coding for bovine, rat, and human prolactin; human growth hormone; and bovine alpha-lactalbumin were amplified by PCR using primers that inserted restriction sites at the 5' and 3' ends and reduced the coding sequence to the mature methionyl protein with bacterially preferred codons in the 5' region. The expressed proteins were folded and oxidized by methods that allowed disulfide bond formation to occur either during or following folding. The effectiveness of the folding procedures was determined for each protein by electrophoresis, absorption spectroscopy, and functional studies. The redox conditions required for folding functional proteins varied as the number of disulfide bonds per unit molecular weight increased. Human growth hormone, 22 kDa; human prolactin, 23 kDa; and bovine prolactin, 23 kDa, contain two, three, and three disulfides, respectively, and are folded correctly by air oxidation performed during renaturation under alkaline conditions. Proper disulfide bond formation of rat prolactin, 23 kDa, containing three disulfide bonds required the addition of a reducing agent at the initiation of renaturation. Bovine alpha-lactalbumin, 14 kDa with four disulfide bonds, required complete renaturation prior to the removal of a reducing agent. SDS-gel electrophoresis under nonreducing conditions provided information regarding the proper folding of these proteins. The absorption of 250-nm light by disulfide bonds also provided information regarding the proper folding of rat prolactin and bovine alpha-lactalbumin.  相似文献   

19.
We selected six peptide sequences as belonging to potential epitopes of tissue plasminogen activator (tPA) using, as the main criterion for their choice, the location of the peptide sequences on the surface of the protein molecule. The six peptides (corresponding to amino acids 4-8, 11-16, 96-101, 272-277, 371-376 and 514-519) were synthesized, coupled to carrier proteins and injected into rabbits. All of these peptides elicited antibodies and 15-75% binding of the corresponding iodinated peptide was obtained with a 1:100 dilution of antiserum. Only two anti-(peptide) sera [anti-(tPA96-101) and anti-(tPA272-277)] reacted with intact tPA and its heavy chain in Western immunoblotting analysis. These two peptides sequences and fragment tPA11-16 appear to be involved in the structure of native antigenic epitopes of tPA, since they were recognized and antibodies present in antisera raised against native tPA. There was no interaction between anti-(tPA4-8) and anti-(tPA371-376) sera with intact one-chain or two-chain tPA. In the case of anti-(tPA4-8) cleavage of one-chain tPA to two-chain tPA and reduction of disulfide bonds exposed this epitope.  相似文献   

20.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号