首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For discrimination between arginine and 19 other amino acids in aminoacylation of tRNA(Arg)-C-C-A by arginyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values. The lowest values were found for Trp, Cys, Lys (D = 800-8500), showing that arginine is 800-8500 times more often incorporated into tRNA(Arg)-C-C-A than noncognate acids at the same amino acid concentrations. The other noncognate amino acids exhibit D values between 10,000 and 60,000. In aminoacylation of tRNA(Arg)-C-C-A(3'NH2) discrimination factors D1 are in the range 10-600. From these values and AMP formation stoichiometry, pretransfer proof-reading factors II1 were determined; from D values and AMP stoichiometry in aminoacylation of tRNA(Arg)-C-C-A, posttransfer proof-reading factors II2 could be calculated, II1 values between 2 and 120 show that pretransfer proof-reading is the main correction step, posttransfer proof-reading (II2 approximately 1-10) plays a marginal role. Initial discrimination factors due to different Gibbs free energies of binding between arginine and the noncognate amino acids were calculated from discrimination and proof-reading factors. According to a two-step binding process, two factors (I1 and I2) were determined. They can be related to hydrophobic interaction forces and hydrogen bonds that are especially formed by the arginine side chain. A hypothetical 'stopper' model of the amino acid recognition site is discussed.  相似文献   

2.
W Freist  I Pardowitz  F Cramer 《Biochemistry》1985,24(24):7014-7023
For discrimination between isoleucine and valine by isoleucyl-tRNA synthetase from yeast, a multistep sequence is established. The initial discrimination of the substrates is followed by a pretransfer and a posttransfer hydrolytic proofreading process. The overall discrimination factor D was determined from kcat and Km values observed in aminoacylation of tRNAIle-C-C-A with isoleucine and valine. From aminoacylation of the modified tRNA species tRNAIle-C-C-3'dA and tRNAIle-C-C-A (3'NH2), the initial discrimination factor I (valid for the reversible substrate binding) and the proofreading factor P1 (valid for the aminoacyl adenylate formation) could be determined. Factor I was computed from ATP consumption and D1, the overall discrimination factor for this partial reaction which can be obtained from kinetic constants, and P1 was calculated from AMP formation rates. Proofreading factor P2 (valid for aminoacyl transfer reaction) was determined from AMP formation rates observed in aminoacylation of tRNAIle-C-C-A and tRNAIle-C-C-3'dA. From the initial discrimination factor I and the AMP formation rates, discrimination factor DAMP in aminoacylation of tRNAIle-C-C-A can be calculated. These values deviate by a factor II from factor D obtained by kinetics which may be due to the fact that for acylation of tRNAIle-C-C-A an initial discrimination factor I' = III is valid. The observed overall discrimination varies up to a factor of 16 according to conditions. Under optimal conditions, 38 000 correct aminoacyl-tRNAs are produced per 1 error while the energy of 5.5 ATPs is dissipated. With the determined energetic and molecular flows for the various steps of the enzymatic reaction, a coherent picture of this new type of "far away from equilibrium enzyme" emerges.  相似文献   

3.
Discrimination factors (D) which are characteristic for discrimination between lysine and 19 naturally occurring non-cognate amino acids have been determined from kcat and Km values for native and phosphorylated lysyl-tRNA synthetases from yeast. Generally, both species of this class II aminoacyl-tRNA synthetase are considerably less specific than the class I synthetases specific for isoleucine, valine, tyrosine, and arginine. D values of the native enzyme are in the range 90-1700, D values of the phosphorylated species in the range 40-770. The phosphorylated enzyme acts faster and less accurately. In aminoacylation of tRNALys-C-C-A(2'NH2) discrimination factors D1 vary over 30-980 for the native and over 8-300 for the phosphorylated enzyme. From AMP formation stoichiometry and D1 values pretransfer proof-reading factors (II1) of 1.1-56 were calculated for for the native enzyme, factors of 1.0-44 for the phosphorylated species. Post-transfer proof-reading factors (II2) were calculated from D values and AMP formation stoichiometry in acylation of tRNALys-C-C-A. Pretransfer proof-reading is the main correction step, posttransfer proof-reading is less effective or negligible (II2 approximately 1-8). Initial discrimination factors (I), which are due to differences in Gibbs free energies of binding between lysine and noncognate substrates (delta delta GI), were calculated from discrimination and proof-reading factors. In contrast to class I synthetases, for lysyl-tRNA synthetase only one initial discrimination step can be assumed and amino acid recognition is reduced to a three-step process instead of the four-step recognition observed for the class I synthetases. Plots of delta delta GI values against accessible surface areas of amino acids show clearly that phosphorylation of the enzyme changes the structures of the amino acid binding sites. This is illustrated by a hypothetical 'stopper model' of these sites.  相似文献   

4.
The aminoacylation of three modified tRNAIle species with isoleucine and with valine by isoleucyl-tRNA synthetase has been investigated by initial rate kinetics. For aminoacylation of tRNAIle-C-C-3'dA with isoleucine, a bi-bi uni-uni ping-pong mechanism has been found by bisubstrate kinetics and inhibition by products and by 3'dATP; for aminoacylation with valine a bi-uni uni-bi ping-pong mechanism. For isoleucylation of tRNAIle-C-C-A(3'NH2) bisubstrate kinetics, inhibition by products and by isoleucinol show a random uni-bi uni-uni-uni ping-pong mechanism; for valylation of this tRNA a bi-bi uni-uni ping-pong mechanism is observed by bisubstrate kinetics and product inhibition. tRNAIle-C-C-2'dA was aminoacylated under modified conditions with isoleucine in a bi-bi uni-uni ping-pong mechanism with a rapid equilibrium segment as observed by bisubstrate kinetics, inhibition by AMP, by P[NH]P as product analog and by isoleucinol. Aminoacylation with valine is achieved in a rapid-equilibrium sequential random AB, ordered C mechanism indicated by bisubstrate kinetics and inhibition by 3'dATP and valinol. All six reactions exhibit orders of substrate addition and product release which are different from those observed in aminoacylation of the natural tRNAIle-C-C-A. The Km values of the three substrates and the kcat values of the six reactions are given. For aminoacylation at the terminal 2'OH group of the tRNA differences of 13.38 and 13.17 kJ in binding energies between valine and isoleucine have been calculated which result in discrimination factors of 181 and 167. For aminoacylation at the terminal 3'-OH group a difference of only 4.43 kJ and a low discrimination factor of only 6 is observed. Thus maximal discrimination between the cognate and the noncognate amino acid is only achieved in aminoacylation at the 2'-OH group and conclusions drawn from experiments with modified tRNAs concerning 2',3'-specificity have led to correct results in spite of different catalytic cycles in aminoacylation of the natural and the modified tRNAs. The stability of Ile-tRNAIle-C-C-2'dA and Val-tRNAIle-C-C-2'dA, the lesser stability of Val-tRNAVal-C-C-2'dA and the instability of Thr-tRNAVal-C-C-2'dA are consistent with postulations for a 'pre-transfer' proofreading step for isoleucyl-tRNA synthetase and a 'post-transfer' hydrolytic editing step for valyl-tRNA synthetase at the terminal 3'OH group of the tRNA.  相似文献   

5.
A total rate equation was used to calculate the discrimination of valine by the isoleucyl-tRNA synthetase from Escherichia coli. The PPi present in the cell makes the backward reaction or the pyrophosphorolysis of the E.aa-AMP possible. If the E.Ile-AMP has been corrected for wrong aminoacyl adenylation by the pretransfer proofreading, the pyrophosphorolysis rapidly equilibrates the corrected E.Ile-AMP with E.Ile and thus spoils the effect of the proofreading. The loss of the corrected species is avoided if there is a barrier (perhaps conformational) formed by a slow reaction step between the noncorrected E.Ile-AMP and the corrected (*E)tRNA(Ile-AMP). If such a slow conformational change exists, the increase in accuracy from the pretransfer proofreading would be beneficial, and, in addition, the PPi increases the accuracy by optimizing the initial discrimination of the wrong amino acid.  相似文献   

6.
F Cramer  U Englisch  W Freist  H Sternbach 《Biochimie》1991,73(7-8):1027-1035
Isoleucyl-tRNA synthetases isolated from commercial baker's yeast and E coli were investigated for their sequences of substrate additions and product releases. The results show that aminoacylation of tRNA is catalyzed by these enzymes in different pathways, eg isoleucyl-tRNA synthetase from yeast can act with four different catalytic cycles. Amino acid specificities are gained by a four-step recognition process consisting of two initial binding and two proofreading steps. Isoleucyl-tRNA synthetase from yeast rejects noncognate amino acids with discrimination factors of D = 300-38000, isoleucyl-tRNA synthetase from E coli with factors of D = 600-68000. Differences in Gibbs free energies of binding between cognate and noncognate amino acids are related to different hydrophobic interaction energies and assumed conformational changes of the enzyme. A simple hypothetical model of the isoleucine binding site is postulated. Comparison of gene sequences of isoleucyl-tRNA synthetase from yeast and E coli exhibits only 27% homology. Both genes show the 'HIGH'- and 'KMSKS'-regions assigned to binding of ATP and tRNA. Deletion of 250 carboxyterminal amino acids from the yeast enzyme results in a fragment which is still active in the pyrophosphate exchange reaction but does not catalyze the aminoacylation reaction. The enzyme is unable to catalyze the latter reaction if more than 10 carboxyterminal residues are deleted.  相似文献   

7.
The influence of substrate concentrations on aminoacylation pathways and substrate specificities was investigated in the acylation reaction catalyzed by isoleucyl-tRNA synthetase from yeast. For the cognate substrates isoleucine and tRNAIle two Km values each differing by a factor about five were determined; the higher values were observed at concentrations higher than 1 microM, the lower values below 1 microM isoleucine or tRNAIle, respectively. At substrate concentrations below 1 microM also kcat values of the isoleucylation reaction are lowered. With the noncognate substrates valine and tRNAVal such differences could not be detected. The substrate ATP did not show any change of its Km value as far as the reaction was measurable. Under six different new assay conditions orders of substrate addition and product release followed sixtimes a sequential ordered ter-ter steady-state mechanism with ATP as the first substrate to be added, isoleucine as the second, and tRNAIle as the third one; pyrophosphate is the first product to be released, isoleucyl-tRNA the second, and AMP the third one. In one case this mechanism was modified by a rapid equilibrium segment for addition of ATP and isoleucine. From kcat and Km values and from AMP formation rates discrimination factors for discrimination between tRNAIleII and tRNAValI as well as between isoleucine and valine were determined. In the first case discrimination factors can vary up to a factor of thirty by changes of tRNA or amino-acid concentrations, in the second case discrimination factors are practically invariant. The two different Km values are hypothetically explained by assumption of anticooperativity in a flip-flop mechanism. Two hypothetical catalytic cycles are postulated.  相似文献   

8.
W Freist 《Biochemistry》1989,28(17):6787-6795
During the last 10 years intensive and detailed studies on mechanisms and specificities of aminoacyl-tRNA synthetases have been carried out. Physical measurements, chemical modification of substrates, site-directed mutagenesis, and determination of kinetic parameters in misacylation reactions with noncognate amino acids have provided extensive knowledge which is now considered critically for its consistency. A common picture emerges: (1) The enzymes work with different catalytic cycles, kinetic constants, and specificities under different assay conditions. (2) Chemical modifications of substrates can have comparable influence on catalysis as can changes in assay conditions. (3) All enzymes show a specificity for the 2'- or 3'-position of the tRNA. (4) Hydrolytic proofreading is achieved in a pre- and a posttransfer process. In most cases pretransfer proofreading is the main step; posttransfer proofreading is often marginal. (5) Initial discrimination of substrates takes place in a two-step binding process. For some investigated enzymes, initial discrimination factors were found to depend on hydrophobic interaction and hydrogen bonds. (6) The overall recognition of amino acids is achieved in a process of at least four steps. At present, only a rough overall picture of aminoacyl-tRNA synthetase action can be given.  相似文献   

9.
Aminoacyl tRNA synthetases (aaRSs) catalyze the first step in protein biosynthesis, establishing a connection between codons and amino acids. To maintain accuracy, aaRSs have evolved a second active site that eliminates noncognate amino acids. Isoleucyl tRNA synthetase edits valine by two tRNA(Ile)-dependent pathways: hydrolysis of valyl adenylate (Val-AMP, pretransfer editing) and hydrolysis of mischarged Val-tRNA(Ile) (posttransfer editing). Not understood is how a single editing site processes two distinct substrates--an adenylate and an aminoacyl tRNA ester. We report here distinct mutations within the center for editing that alter adenylate but not aminoacyl ester hydrolysis, and vice versa. These results are consistent with a molecular model that shows that the single editing active site contains two valyl binding pockets, one specific for each substrate.  相似文献   

10.
The order of substrate addition to tyrosyl-tRNA synthetase from baker's yeast was investigated by bisubstrate kinetics, product inhibition and inhibition by dead-end inhibitors. The kinetic patterns are consistent with a random bi-uni uni-bi ping-pong mechanism. Substrate specificity with regard to ATP analogs shows that the hydroxyl groups of the ribose moiety and the amino group in position 6 of the base are essential for recognition of ATP as substrate. Specificity with regard to amino acids is characterized by discrimination factors D which are calculated from kcat and Km values obtained in aminoacylation of tRNATyr-C-C-A. The lowest values are observed for Cys, Phe, Trp (D = 28,000-40,000), showing that, at the same amino acid concentrations, tyrosine is 28,000-40,000 times more often attached to tRNATyr-C-C-A than the noncognate amino acids. With Gly, Ala and Ser no misacylation could be detected (D greater than 500,000); D values of the other amino acids are in the range of 100,000-500,000. Lower specificity is observed in aminoacylation of the modified substrate tRNATyr-C-C-A(3'NH2) (D1 = 500-55,000). From kinetic constants and AMP-formation stoichiometry observed in aminoacylation of this tRNA species, as well as in acylating tRNATyr-C-C-A hydrolytic proof-reading factors could be calculated for a pretransfer (II 1) and a post-transfer (II 2) proof-reading step. The observed values of II 1 = 12-280 show that pretransfer proof-reading is the main correction step whereas post-transfer proof-reading is marginal for most amino acids (II 2 = 1-2). Initial discrimination factors caused by differences in Gibbs free energies of binding between tyrosine and noncognate amino acids are calculated from discrimination and proof-reading factors. Assuming a two-step binding process, two factors (I1 and I2) are determined which can be related to hydrophobic interaction forces. The tyrosine side chain is bound by hydrophobic forces and hydrogen bonds formed by its hydroxyl group. A hypothetical model of the amino acid binding site is discussed and compared with results of X-ray analysis of the enzyme from Bacillus stearothermophilus.  相似文献   

11.
The substrate specificity of isoleucyl-tRNA synthetase from Escherichia coli MRE 600 with regard to ATP analogs has been compared with the results obtained with isoleucyl-tRNA synthetase from yeast. The enzyme from E. coli is less specific, the two enzymes exhibit different topographies of their active centres. The order of substrate addition to isoleucyl-tRNA synthetase from E. coli MRE 600 has been investigated by bisubstrate kinetics, product inhibition and inhibition by substrate analogs. The inhibition studies were done in the aminoacylation and in the pyrophosphate exchange reaction, the aminoacylation was investigated in the absence and presence of inorganic pyrophosphatase. As found for isoleucyl-tRNA synthetase from yeast, the results of the pyrophosphate exchange studies indicate the possibility of formation of E . Ile-AMP . ATP complexes by random addition of one ATP and one isoleucine molecule, followed by adenylate formation, release of pyrophosphate and subsequent addition of a second molecule of ATP. For the aminoacylation in the absence of pyrophosphatase, a rapid-equilibrium random ter addition of the substrates is found whereas the enzyme from yeast exhibits a steady-state ordered ter-ter mechanism; in the presence of pyrophosphatase the mechanism is bi-uni uni-bi ping-pong similarly as observed for the yeast enzyme. A comparison of inhibition patterns obtained with N(6)-benzyladenosine 5'-triphosphate under different assay conditions (spermine or magnesium ions, addition of pyrophosphatase) indicates that even more than two pathways of the aminoacylation may exist. The catalytic cycles of the two mechanisms derived from the observed orders of substrate addition and product release include the same enzyme substrate complex (E . tRNA . Ile-AMP) for the aminoacyl transfer reaction. The kcat values, however, are considerably different: kcat of the sequential pathway is about 40% lower than kcat of the ping-pong mechanism.  相似文献   

12.
Transfer RNA from Escherichia coli C6, a Met-, Cys-, relA- mutant, was previously shown to contain an altered tRNA(Ile) which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676-7683). We now report the purification of this altered tRNA(Ile) and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNA(Ile) purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNA(Ile) (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl approximately AMP.Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNA(Ile) bound more efficiently to its synthetase compared to normal tRNA(Ile). Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNA(Ile) contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNA(Ile) contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNA(Ile) without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNA(Ile) has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNA(Ile) from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNA(Ile) for aminoacylation is discussed.  相似文献   

13.
To correct misactivation and misacylation errors, Escherichia coli valyl-tRNA synthetase (ValRS) catalyzes a tRNA(Val)-dependent editing reaction at a site distinct from its aminoacylation site. Here we examined the effects of replacing the conserved 3'-adenosine of tRNA(Val) with nucleoside analogs, to identify structural elements of the 3'-terminal nucleoside necessary for tRNA function at the aminoacylation and editing sites of ValRS. The results show that the exocyclic amino group (N6) is not essential: purine riboside-substituted tRNA(Val) is active in aminoacylation and in stimulating editing. Presence of an O6 substituent (guanosine, inosine, xanthosine) interferes with aminoacylation as well as posttransfer and total editing (pre- plus posttransfer editing). Because ValRS does not recognize substituents at the 6-position, these results suggest that an unprotonated N1, capable of acting as an H-bond acceptor, is an essential determinant for both the aminoacylation and editing reactions. Substituents at the 2-position of the purine ring, either a 2-amino group (2-aminopurine, 2,6-diaminopurine, guanosine, and 7-deazaguanosine) or a 2-keto group (xanthosine, isoguanosine), strongly inhibit both aminoacylation and editing. Although aminoacylation by ValRS is at the 2'-OH, substitution of the 3'-terminal adenosine of tRNA(Val) with 3'-deoxyadenosine reduces the efficiency of valine acceptance and of posttransfer editing, demonstrating that the 3'-terminal hydroxyl group contributes to tRNA recognition at both the aminoacylation and editing sites. Our results show a strong correlation between the amino acid accepting activity of tRNA and its ability to stimulate editing, suggesting misacylated tRNA is a transient intermediate in the editing reaction, and editing by ValRS requires a posttransfer step.  相似文献   

14.
R Rauhut  H J Gabius  F Cramer 《Biochemistry》1985,24(15):4052-4057
The phenylalanyl-tRNA synthetases from cytoplasm and chloroplasts of bean (Phaseolus vulgaris) leaves employ different strategies with respect to accuracy. The chloroplastic enzyme that is coded for by the nuclear genome follows the pathway of posttransfer proofreading, also characteristic for enzymes from eubacteria and cytoplasm and mitochondria of lower eukaryotic organisms. In contrast, the cytoplasmic enzyme uses pretransfer proofreading in the case of noncognate natural amino acids, characteristic for higher eukaryotic organisms and archaebacteria. Dependent on the nature of the noncognate amino acid, pretransfer proofreading in this case occurs without tRNA stimulation or with tRNA stimulated with no or little effect of the nonaccepting 3'-OH group of the terminal adenosine. The fundamental mechanistic difference in proofreading between the heterotopic intracellular isoenzymes of the plant cell supports the idea of the origin of the chloroplastic gene by gene transfer from a eubacterial endosymbiont to the nucleus. Origin by duplication of the nuclear gene, as indicated for mitochondrial phenylalanyl-tRNA synthetases [Gabius, H.-J., Engelhardt, R., Schroeder, F.R., & Cramer, F. (1983) Biochemistry 22, 5306-5315], appears unlikely. Further analyses of the ATP/PPi pyrophosphate exchange and aminoacylation of tRNAPhe-C-C-A(3'NH2), using 11 phenylalanine analogues, reveal intraspecies and interspecies variability of the architecture of the amino acid binding part within the active site.  相似文献   

15.
Three analogues each of leucine and isoleucine carrying hydroxy groups in gamma- or delta- or gamma- and delta-position have been synthesized, and tested in the aminoacylation by leucyl-tRNA synthetases from E. coli and yeast. Hydrolytic proofreading, as proposed in the chemical proofreading model, of these analogues and of homocysteine should result in a lactonisation of these compounds and therefore provide information regarding the proofreading mechanism of the two leucyl-tRNA synthetases. Leucyl-tRNA synthetase from E. coli shows a high initial substrate discrimination. Only two analogues, gamma-hydroxyleucine and homocysteine are activated and transferred to tRNALeu where a post-transfer proofreading occurs. Lactonisation of gamma-hydroxyleucine and homocysteine could be detected. Leucyl-tRNA synthetase from yeast has a relatively poor initial discrimination of these substrates, which is compensated by a very effective pre-transfer proofreading on the aminoacyl-adenylate level. No lactonisation nor mischarged tRNALeu is detectable.  相似文献   

16.
The specificity of valyl-, phenylalanyl-, and tyrosyl-tRNA synthetases from yeast has been examined by a series of stringent tests designed to eliminate the possibility of artefactual interference. Valyl-tRNA synthetase, as well as activating a number of amino acid analogues, will accept alanine, cysteine, isoleucine, and serine in addition to threonine as substrates for both ATP-PPi exchange and transfer to some tRNAVal species. The transfer is not observed if atempts are made to isolate the appropriate aminoacyl-tRNAVal-C-C-A but its role in the overall aminoacylation can be suspected from both the formation of a stable aminoacyl-tRNAVal-C-C-A(3'NH2) compound and from the stoichiometry of ATP hydrolysis during the aminoacylation of the native tRNA. Similar tests with phenylalanyl-tRNA synthetase indicate that this enzyme will also activate and transfer other naturally occurring amino acids, namely, leucine, methionine, and tyrosine. The tyrosine enzyme, which lacks the hydrolytic capacity of the other two enzymes (von der Haar, F., & Cramer, F (1976) Biochemistry 15, 4131--4138) is probably absolutely specific for tyrosine. It is concluded that chemical proofreading, in terms of an enzymatic hydrolysis of a misacylated tRNA, plays an important part in maintaining the specificity in the overall reaction and that this activity may be more widespread than has so far been suspected.  相似文献   

17.
Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri activates a number of phenylalanine analogues (methionine, p-fluorophenylalanine, beta-phenylserine, beta-thien-2-ylalanine, 2-amino-4-methylhex-4-enoic acid and ochratoxin A) in the absence of tRNA, as demonstrated by Km and kcat of the ATP/PPi exchange reaction. Upon complexation with tRNA, AMP formation from the enzyme X tRNA complex in the presence of ATP, one of the above analogues or tyrosine, leucine, mimosine, N-benzyl-L- or N-benzyl-D-phenylalanine indicates activation of the analogues under conditions of aminoacylation. Natural noncognate amino acids are not transferred to tRNAPhe-C-C-A or tRNAPhe-C-C-A-(3'-NH2). This pretransfer proofreading mechanism, together with the comparatively low ratio of synthetic to successive hydrolytic steps, resembles the mechanism of liver enzymes of vertebrates. In contrast, eubacterial phenylalanyl-tRNA synthetases achieve the necessary fidelity by post-transfer proofreading, a corrective hydrolytic event after transfer to tRNAPhe. Diadenosine 5',5'-P1,P4-tetraphosphate synthesis is shown to be a common feature for phenylalanyl-tRNA synthetases from all three lineages of descent. The immunological approach demonstrates that aminoacyl-tRNA synthetases do not belong to the group of enzymes in gene expression with high structural conservation.  相似文献   

18.
Sodium pseudomonate was shown to be a powerful competitive inhibitor of Escherichia coli B isoleucyl-tRNA synthetase (Ile-tRNA synthetase). The antibiotic competitively inhibits (Ki 6 nM; cf. Km 6.3 microM), with respect top isoleucine, the formation of the enzyme . Ile approximately AMP complex as measured by the pyrophosphate-exchange reaction, and has no effect on the transfer of [14C]isoleucine from the enzyme . [14C]Ile approximately AMP complex to tRNAIle. The inhibitory constant for the pyrophosphate-exchange reaction was of the same order as that determined for the inhibition of the overall aminoacylation reaction (Ki 2.5 nM; cf. Km 11.1 microM). Sodium [9'-3H]pseudomonate forms a stable complex with Ile-tRNA synthetase. Gel-filtration and gel-electrophoresis studies showed that the antibiotic is only fully released from the complex by 5 M-urea treatment or boiling in 0.1% sodium dodecyl sulphate. The molar binding ratio of sodium [9'-3H]pseudomonate to Ile-tRNA synthetase was found to be 0.85:1 by equilibrium dialysis. Aminoacylation of yeast tRNAIle by rat liver Ile-tRNA synthetase was also competitively inhibited with respect to isoleucine, Ki 20 microM (cf. Km 5.4 microM). The Km values for the rat liver and E. coli B enzymes were of the same order, but the Ki for the rat liver enzyme was 8000 times the Ki for the E. coli B enzyme. This presumably explains the low toxicity of the antibiotic in mammals.  相似文献   

19.
Coenzyme A (CoA-SH), a cofactor in carboxyl group activation reactions, carries out a function in nonribosomal peptide synthesis that is analogous to the function of tRNA in ribosomal protein synthesis. The amino acid selectivity in the synthesis of aminoacyl-thioesters by nonribosomal peptide synthetases is relaxed, whereas the amino acid selectivity in the synthesis of aminoacyl-tRNA by aminoacyl-tRNA synthetases is restricted. Here I show that isoleucyl-tRNA synthetase aminoacylates CoA-SH with valine, leucine, threonine, alanine, and serine in addition to isoleucine. Valyl-tRNA synthetase catalyzes aminoacylations of CoA-SH with valine, threonine, alanine, serine, and isoleucine. Lysyl-tRNA synthetase aminoacylates CoA-SH with lysine, leucine, threonine, alanine, valine, and isoleucine. Thus, isoleucyl-, valyl-, and lysyl-tRNA synthetases behave as aminoacyl-S-CoA synthetases with relaxed amino acid selectivity. In contrast, RNA minihelices comprised of the acceptor-TpsiC helix of tRNA(Ile) or tRNA(Val) were aminoacylated by cognate synthetases selectively with isoleucine or valine, respectively. These and other data support a hypothesis that the present day aminoacyl-tRNA synthetases originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis, functionally similar to the present day nonribosomal peptide synthetases.  相似文献   

20.
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNAIle which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8×102).(4.33×102) = 7.8×104, (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNAIle. The present study shows a non-michaelis type dependence of rate of reaction on tRNAIle concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNAIle whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号