首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

2.
B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory receptor expressed by B and T cells. We previously identified two tyrosine-containing signaling motifs in the cytoplasmic domain of BTLA that interact with the SHP-1 and SHP-2 phosphatases. BTLA has a third conserved tyrosine-containing motif within the cytoplasmic domain, similar in sequence to a Grb-2 recruitment site. To identify specific interacting proteins that would be recruited to this motif, we carried out an unbiased screen by using synthetic peptides in active (e.g., phosphotyrosil-containing) or control (e.g., non-phosphorylated) forms as baits. Using mass spectrometry, we identified two specific interacting proteins, Grb-2 and the p85 subunit of PI3K. Further, we demonstrate that the interaction with Grb-2 is direct, whereas the recruitment of the p85 subunit by BTLA phosphotyrosile-containing peptides may be indirect via its association with Grb-2. These findings may provide biochemical basis for previously unexplained actions of BTLA.  相似文献   

3.
Human NK cells use class I MHC-binding inhibitory receptors, such as the killer cell Ig-like receptor (KIR) family, to discriminate between normal and abnormal cells. Some tumors and virus-infected cells down-regulate class I MHC and thereby become targets of NK cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatases, Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2, to two phosphorylated cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). KIR2DL5 is a type II member of the KIR2D family with an atypical extracellular domain and an intracytoplasmic domain containing one typical ITIM and one atypical ITIM sequence. Although KIR2DL5 structure is expressed by approximately 50% of humans and is conserved among primate species, its function has not been determined. In the present study, we directly compared functional and biochemical properties of KIR2DL5, KIR3DL1 (a type I KIR with two ITIMs), and KIR2DL4 (the only other type II KIR, which has a single ITIM) in a human NK-like cell line. Our results show that KIR2DL5 is an inhibitory receptor that can recruit both SHP-1 and SHP-2, and its inhibitory capacity is more similar to that of the cytoplasmic domain of KIR2DL4 than KIR3DL1. Interestingly, inhibition of NK cell cytotoxicity by KIR2DL5 was blocked by dominant-negative SHP-2, but not dominant-negative SHP-1, whereas both dominant-negative phosphatases can block inhibition by KIR3DL1. Therefore, the cytoplasmic domains of type II KIRs (2DL4 and 2DL5) exhibit distinct inhibitory capacities when compared with type I KIRs (3DL1), due to alterations in the canonical ITIM sequences.  相似文献   

4.
5.
Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.  相似文献   

6.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

7.
To study the cis- and trans-acting factors that mediate programmed death 1 (PD-1) signaling in primary human CD4 T cells, we constructed a chimeric molecule consisting of the murine CD28 extracellular domain and human PD-1 cytoplasmic tail. When introduced into CD4 T cells, this construct mimics the activity of endogenous PD-1 in terms of its ability to suppress T cell expansion and cytokine production. The cytoplasmic tail of PD-1 contains two structural motifs, an ITIM and an immunoreceptor tyrosine-based switch motif (ITSM). Mutation of the ITIM had little effect on PD-1 signaling or functional activity. In contrast, mutation of the ITSM abrogated the ability of PD-1 to block cytokine synthesis and to limit T cell expansion. Further biochemical analyses revealed that the ability of PD-1 to block T cell activation correlated with recruitment of Src homology region 2 domain-containing phosphatase-1 (SHP-1) and SHP-2, and not the adaptor Src homology 2 domain-containing molecule 1A, to the ITSM domain. In TCR-stimulated T cells, SHP-2 associated with PD-1, even in the absence of PD-1 engagement. Despite this interaction, the ability of PD-1 to block T cell activation required receptor ligation, suggesting that colocalization of PD-1 with CD3 and/or CD28 may be necessary for inhibition of T cell activation.  相似文献   

8.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

9.
Recognition of antigen by the B cell antigen receptor (BCR) determines the subsequent fate of a B cell and is regulated in part by the involvement of other surface molecules, termed coreceptors. CD22 is a B cell-restricted coreceptor that gets rapidly tyrosyl-phosphorylated and recruits various signaling molecules to the membrane following BCR ligation. Although CD22 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), only the two carboxyl-terminal ITIM tyrosines are required for efficient recruitment of the SHP-1 phosphatase after BCR ligation. Furthermore, Grb2 is inducibly recruited to CD22 in human and murine B cells. Unlike SHP-1, Grb2 recruitment to CD22 is not inhibited by specific doses of the Src family kinase-specific inhibitor PP1. The tyrosine residue in CD22 required for Grb2 recruitment (Tyr-828) is distinct and independent from the two ITIM tyrosines required for efficient SHP-1 recruitment (Tyr-843 and Tyr-863). Individually both Lyn and Syk are required for maximal phosphorylation of CD22 following ligation of the BCR, and together Lyn and Syk are required for all of the constitutive and induced tyrosine phosphorylation of CD22. We propose that the cytoplasmic tail of CD22 contains two domains that regulate signal transduction pathways initiated by the BCR and B cell fate.  相似文献   

10.
The B and T lymphocyte attenuator (BTLA) is a recently identified member of the CD28 family of cell receptors. Initial reports demonstrated that mice deficient in BTLA expression were more susceptible to experimental autoimmune encephalomyelitis, indicating that BTLA was likely to function as a negative regulator of T cell activation. However, cross-linking of BTLA only resulted in a 2-fold reduction of IL-2 production, questioning the potency with which BTLA engagement blocks T cell activation. We established a model in which BTLA signaling could be studied in primary human CD4 T cells. We observed that cross-linking of a chimeric receptor consisting of the murine CD28 extracellular domain and human BTLA cytoplasmic tail potently inhibits IL-2 production and completely suppresses T cell expansion. Mutation of any BTLA tyrosine motifs had no effect on the ability of BTLA to block T cell activation. Only mutation of all four tyrosines rendered the BTLA cytoplasmic tail nonfunctional. We performed structure-function studies to determine which factors recruited to the BTLA cytoplasmic tail correlated with BTLA function. Using pervanadate as a means to phosphorylate the BTLA cytoplasmic tail, we observed both Src homology protein (SHP)-1 and SHP-2 recruitment. However, upon receptor engagement, we observed only SHP-1 recruitment, and mutations that abrogated SHP-1 recruitment did not impair BTLA function. These studies question whether SHP-1 or SHP-2 have any role in BTLA function and caution against the use of pervanadate as means to initiate signal transduction cascades in primary cells.  相似文献   

11.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

12.
We describe the molecular cloning and characterization of a novel myeloid inhibitory siglec, MIS, that belongs to the family of sialic acid-binding immunoglobulin-like lectins. A full-length MIS cDNA was obtained from murine bone marrow cells. MIS is predicted to contain an extracellular region comprising three immunoglobulin-like domains (V-set amino-terminal domain followed by two C-set domains), a transmembrane domain and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. The closest relative of MIS in the siglec family is human siglec 8. Extracellular regions of these two siglecs share 47% identity at the amino acid level. Southern blot analysis suggests the presence of one MIS gene. MIS is expressed in the spleen, liver, heart, kidney, lung and testis tissues. Several isoforms of MIS protein exist due to the alternative splicing. In a human promonocyte cell line, MIS was able to bind Src homology 2-containing protein-tyrosine phosphatases, SHP-1 and SHP-2. This binding was mediated by the membrane-proximal ITIM of MIS. Moreover, MIS exerted an inhibitory effect on FcgammaRI receptor-induced calcium mobilization. These data suggest that MIS can play an inhibitory role through its ITIM sequences.  相似文献   

13.
SPAP2, an Ig family receptor containing both ITIMs and ITAMs   总被引:4,自引:0,他引:4  
This study reports cloning and characterization of SPAP2, a novel transmembrane protein. The extracellular portion of SPAP2 contains six immunoglobulin-like domains and its intracellular segment has two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs). We also identified four alternatively spliced products. Sequence alignment with the genomic database revealed that the SPAP2 gene contains 16 exons and is localized at chromosome 1q21. PCR analyses demonstrated that SPAP2 mRNA is expressed in restricted human tissues including the kidney, salivary gland, adrenal gland, uterus, and bone marrow. Tyrosine-phosphorylated SPAP2 is specifically associated with SH2 domain-containing tyrosine kinases Syk and Zap70 and SH2 domain-containing tyrosine phosphatases SHP-1 and SHP-2. Site-specific mutagenesis studies revealed that tyrosyl residues 650 and 662 embedded in the ITIMs are responsible for the binding of Syk and Zap70 while tyrosyl residues 692 and 722 embedded in the ITIMs are involved in interactions with SHP-1 and SHP-2. Finally, recruitment of SHP-1 to the tyrosine-phosphorylated ITIMs led to a marked activation of the enzyme.  相似文献   

14.
Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1.  相似文献   

15.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

16.
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility. platelet endothelial cell adhesion molecule-1; endothelial cells; angiogenesis  相似文献   

17.
We have identified and characterized two mouse cDNAs in a mouse antigen-stimulated bone marrow-derived mast cell cDNA library, both of which encode type I transmembrane proteins. The genes were closely mapped in the distal region of mouse chromosome 11 and expressed not only in mast cells but also widely in leukocytes. The extracellular domains of their encoded proteins contain a single variable immunoglobulin (Ig) motif sharing about 90% identity with amino acids, showing that they comprise a pair of molecules and belong to the Ig superfamily. We named these molecules leukocyte mono-Ig-like receptor1 and 2 (LMIR1 and 2). The intracellular domain of LMIR1 contains several immunoreceptor tyrosine-based inhibition motifs (ITIMs). When cross-linked, the intracellular domain was tyrosine phosphorylated and capable of recruiting tyrosine phosphatases, SHP-1 and SHP-2 and inositol polyphosphate 5-phosphatase, SHIP. LMIR2, on the other hand, contains a short cytoplasmic tail and a characteristic transmembrane domain carrying two positively charged amino acids associated with three kinds of immunoreceptor tyrosine-based activation motif (ITAM)-bearing molecules, DAP10, DAP12, and FcRgamma. These findings suggest that a new pair of ITIM/ITAM-bearing receptors, LMIR1 and 2, regulate mast cell-mediated inflammatory responses through yet to be defined ligand(s).  相似文献   

18.
CD22, a B lymphocyte membrane glycoprotein, contains immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region and recruits Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) to the phosphorylated ITIMs upon ligation of B lymphocyte antigen receptor (BCR), thereby negatively regulating BCR signaling. Among the three previously identified ITIMs, both ITIMs containing tyrosine residues at position 843 (Tyr(843)) and 863 (Tyr(863)), respectively, are shown to be required for CD22 to recruit SHP-1 and regulate BCR signaling upon BCR ligation by anti-Ig antibody (Ab), indicating that CD22 has the SHP-1-binding domain at the region containing Tyr(843) and Tyr(863). Here we address the requirement of CD22 for SHP-1 recruitment and BCR regulation upon BCR ligation by antigen, which induces much stronger CD22 phosphorylation than anti-Ig Ab does. We demonstrate that the CD22 mutant in which both Tyr(843) and Tyr(863) are replaced by phenylalanine (CD22F5/6) recruits SHP-1 and regulates BCR signaling upon stimulation with antigen but not anti-Ig Ab. This result strongly suggests that CD22 contains another SHP-1 binding domain that is specifically activated upon stimulation with antigen. Both of the flanking sequences of Tyr(783) and Tyr(817) fit the consensus sequence of ITIM, and the CD22F5/6 mutant requires these tyrosine residues for SHP-1 binding and BCR regulation. Thus, these ITIMs constitute a novel conditional SHP-1-binding site of CD22 that is activated upon BCR ligation by antigen but not by anti-Ig Ab.  相似文献   

19.
Fc gamma RIIB are IgG receptors that inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. Inhibition depends on an immunoreceptor tyrosine-based inhibition motif (ITIM) that is phosphorylated upon Fc gamma RIIB coaggregation with ITAM-bearing receptors and recruits SH2 domain-containing phosphatases. Agarose bead-coated phosphorylated ITIM peptides (pITIMs) bind in vitro the single-SH2 inositol 5-phosphatases (SHIP1 and SHIP2) and the two-SH2 protein tyrosine phosphatases (SHP-1 and SHP-2). Phosphorylated Fc gamma RIIB, however, recruit selectively SHIP1/2 in vivo. We aimed here at explaining this discordance. We found that beads coated with low amounts of pITIM bound in vitro SHIP1, but not SHP-1, i.e. behaved as phosphorylated Fc gamma RIIB in vivo. The reason is that SHP-1 requires its two SH2 domains to bind on adjacent pITIMs. Consequently, the binding of SHP-1, but not of SHIP1, increased with pITIM density on beads. When trying to increase Fc gamma RIIB phosphorylation in B cells and mast cells, we found that concentrations of ligands optimal for Fc gamma RIIB phosphorylation failed to induce SHP-1 recruitment. SHP-1 was, however, recruited by Fc gamma RIIB when hyperphosphorylated following cell treatment with pervanadate. Our data suggest that Fc gamma RIIB phosphorylation may not be sufficient in vivo to enable the recruitment of SHP-1 but that (pathological?) conditions that would hyperphosphorylate Fc gamma RIIB might enable SHP-1 recruitment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号