首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.  相似文献   

2.
3.
Spence J  Gali RR  Dittmar G  Sherman F  Karin M  Finley D 《Cell》2000,102(1):67-76
Ubiquitin is ligated to L28, a component of the large ribosomal subunit, to form the most abundant ubiquitin-protein conjugate in S. cerevisiae. The human ortholog of L28 is also ubiquitinated, indicating that this modification is highly conserved in evolution. During S phase of the yeast cell cycle, L28 is strongly ubiquitinated, while reduced levels of L28 ubiquitination are observed in G1 cells. L28 ubiquitination is inhibited by a Lys63 to Arg substitution in ubiquitin, indicating that L28 is modified by a variant, Lys63-linked multiubiquitin chain. The K63R mutant of ubiquitin displays defects in ribosomal function in vivo and in vitro, including a dramatic sensitivity to translational inhibitors. L28, like other ribosomal proteins, is metabolically stable. Therefore, these data suggest a regulatory role for multiubiquitin chains that is reversible and does not function to target the acceptor protein for degradation.  相似文献   

4.
Autophagy, mediated by a number of autophagy‐related (ATG) proteins, plays an important role in the bulk degradation of cellular constituents. Beclin‐1 (also known as Atg6 in yeast) is a core protein essential for autophagic initiation and other biological processes. The activity of Beclin‐1 is tightly regulated by multiple post‐translational modifications, including ubiquitination, yet the molecular mechanism underpinning its reversible deubiquitination remains poorly defined. Here, we identified ubiquitin‐specific protease 19 (USP19) as a positive regulator of autophagy, but a negative regulator of type I interferon (IFN) signaling. USP19 stabilizes Beclin‐1 by removing the K11‐linked ubiquitin chains of Beclin‐1 at lysine 437. Moreover, we found that USP19 negatively regulates type I IFN signaling pathway, by blocking RIG‐I‐MAVS interaction in a Beclin‐1‐dependent manner. Depletion of either USP19 or Beclin‐1 inhibits autophagic flux and promotes type I IFN signaling as well as cellular antiviral immunity. Our findings reveal novel dual functions of the USP19‐Beclin‐1 axis by balancing autophagy and the production of type I IFNs.  相似文献   

5.
p53具有抑制肿瘤细胞增殖的作用,但是细胞内p53蛋白的堆积反而加速细胞衰老或凋亡,因此对p53进行严格的调控显得格外重要.泛素化、磷酸化和乙酰化是p53蛋白最主要的几种修饰形式,但近来研究表明泛素化对p53调控发挥着中心作用.MDM2是主要的负调节因子,其具有泛素连接酶的活性,早先的研究认为MDM2的作用主要是特异性结合p53并介导其在蛋白酶作用下降解,但近来的研究发现MDM2还可以介导p53的核-浆交换,这种现象在DNA损伤时尤为明显.推测MDM2介导p53的泛素化在体内可能发挥着多种调控功能.  相似文献   

6.
7.
Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)‐induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal‐regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II‐induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II‐induced EGFR activation is mediated by c‐Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c‐Src‐dependent EGFR activation may play an important role in Ang II‐induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II‐associated cardiac diseases.  相似文献   

8.
RIG‐I is a well‐studied sensor of viral RNA that plays a key role in innate immunity. p97 regulates a variety of cellular events such as protein quality control, membrane reassembly, DNA repair, and the cell cycle. Here, we report a new role for p97 with Npl4‐Ufd1 as its cofactor in reducing antiviral innate immune responses by facilitating proteasomal degradation of RIG‐I. The p97 complex is able to directly bind both non‐ubiquitinated RIG‐I and the E3 ligase RNF125, promoting K48‐linked ubiquitination of RIG‐I at residue K181. Viral infection significantly strengthens the interaction between RIG‐I and the p97 complex by a conformational change of RIG‐I that exposes the CARDs and through K63‐linked ubiquitination of these CARDs. Disruption of the p97 complex enhances RIG‐I antiviral signaling. Consistently, administration of compounds targeting p97 ATPase activity was shown to inhibit viral replication and protect mice from vesicular stomatitis virus (VSV) infection. Overall, our study uncovered a previously unrecognized role for the p97 complex in protein ubiquitination and revealed the p97 complex as a potential drug target in antiviral therapy.  相似文献   

9.
Signaling by tumor necrosis factor (TNF) receptor 1 (TNF-R1), a prototypic member of the death receptor family, mediates pleiotropic biological outcomes ranging from inflammation and cell proliferation to cell death. Although many elements of specific signaling pathways have been identified, the main question of how these selective cell fate decisions are regulated is still unresolved. Here we identified TNF-induced K63 ubiquitination of TNF-R1 mediated by the ubiquitin ligase RNF8 as an early molecular checkpoint in the regulation of the decision between cell death and survival. Downmodulation of RNF8 prevented the ubiquitination of TNF-R1, blocked the internalization of the receptor, prevented the recruitment of the death-inducing signaling complex and the activation of caspase-8 and caspase-3/7, and reduced apoptotic cell death. Conversely, recruitment of the adaptor proteins TRADD, TRAF2, and RIP1 to TNF-R1, as well as activation of NF-κB, was unimpeded and cell growth and proliferation were significantly enhanced in RNF8-deficient cells. Thus, K63 ubiquitination of TNF-R1 can be sensed as a new level of regulation of TNF-R1 signaling at the earliest stage after ligand binding.  相似文献   

10.
NFκB signaling plays a significant role in human disease, including breast and ovarian carcinoma, insulin resistance, embryonic lethality and liver degeneration, rheumatoid arthritis, aging and Multiple Myeloma (MM). Inhibitor of κB (IκB) kinase β (IKKβ) regulates canonical Nuclear Factor κB (NFκB) signaling in response to inflammation and cellular stresses. NFκB activation requires Lys63-linked (K63-linked) ubiquitination of upstream proteins such as NEMO or TAK1, forming molecular complexes with membrane-bound receptors. We demonstrate that IKKβ itself undergoes K63-linked ubiquitination. Mutations in IKKβ at Lys171, identified in Multiple Myeloma and other cancers, lead to a dramatic increase in kinase activation and K63-linked ubiquitination. These mutations also result in persistent activation of STAT3 signaling. Liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis identified Lys147, Lys418, Lys555 and Lys703 as predominant ubiquitination sites in IKKβ. Specific inhibition of the UBC13-UEV1A complex responsible for K63-linked ubiquitination establishes Lys147 as the predominant site of K63-ubiquitin conjugation and responsible for STAT3 activation. Thus, IKKβ activation leads to ubiquitination within the kinase domain and assemblage of a K63-ubiquitin conjugated signaling platform. These results are discussed with respect to the importance of upregulated NFκB signaling known to occur frequently in MM and other cancers.  相似文献   

11.
Deubiquitinating enzymes (DUBs) control the ubiquitination status of proteins in various cellular pathways. Regulation of the activity of DUBs, which is critically important to cellular homoeostasis, can be achieved at the level of gene expression, protein complex formation, or degradation. Here, we report that ubiquitination also directly regulates the activity of a DUB, ataxin‐3, a polyglutamine disease protein implicated in protein quality control pathways. Ubiquitination enhances ubiquitin (Ub) chain cleavage by ataxin‐3, but does not alter its preference for K63‐linked Ub chains. In cells, ubiquitination of endogenous ataxin‐3 increases when the proteasome is inhibited, when excess Ub is present, or when the unfolded protein response is induced, suggesting that the cellular functions of ataxin‐3 in protein quality control are modulated through ubiquitination. Ataxin‐3 is the first reported DUB in which ubiquitination directly regulates catalytic activity. We propose a new function for protein ubiquitination in regulating the activity of certain DUBs and perhaps other enzymes.  相似文献   

12.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

13.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates multiple cellular processes including cell survival/apoptosis and growth. In the cardiac context, PI3Kalpha plays important roles in cardiac growth. We have shown that cardiac PI3K activity is highly regulated during development, with the highest levels found during the fetal-neonatal transition period and the lowest levels in the adult. There is a close relationship between cardiomyocyte proliferation and cardiac PI3K activity. In adult transgenic mice, however, the prolonged constitutive activation of PI3Kalpha in the heart results in hypertrophy. To develop a strategy to allow temporally controlled overexpression of cardiac PI3Kalpha, we engineered a tetracycline (tet) transactivator tet-off controlled transgenic mouse line with a conditional overexpression of a cardiac-specific fusion protein of the SH2 domain of p85 and p110alpha. Cardiac PI3K activity and Akt phosphorylation were significantly increased in adult mice after transgene induction following the removal of doxycycline for 2 wk. The heart weight-to-body weight ratio was not changed, and there were no signs of cardiomyopathy. The overexpression of PI3Kalpha resulted in increased left ventricular (LV) developed pressure and the maximal and minimal positive values of the first derivative of LV pressure, but not heart rate, as assessed in Langendorff hearts. Mice overexpressing PI3Kalpha also had increases in the levels of Ca(2+)-regulating proteins, including the L-type Ca(2+) channels, ryanodine receptors, and sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a. Thus the temporally controlled overexpression of cardiac PI3Kalpha does not induce hypertrophy or cardiomyopathy but results in increased contractility, probably via the increased expression of multiple Ca(2+)-regulating proteins. These distinct phenotypes suggest a fundamental difference between transgenic mice with temporal or prolonged activation of cardiac PI3Kalpha.  相似文献   

14.
15.
In the heart, the proteomes secreted by both cardiac stem cells (CSCs) and cardiac myocytes could act synergistically, but the identification and functionality of the proteins comprising the individual secretomes have not yet been described. In this study, we have identified proteins present in the media obtained from cultured rat CSCs and from cultured neonatal rat ventricular myocytes (NRVMs) and compared them with proteins identified in the media alone. Briefly, 83 unique proteins were identified after analysis by RPLC and MS. In total 49 and 23% were NRVM‐specific or CSC‐specific proteins, respectively, and 63% of total 83 proteins were integral plasma membrane and/or known secreted proteins. Fifteen proteins met our criteria for paracrine/autocrine factors: (i) robust protein identification, (ii) cell specific and (iii) known to be secreted. Most of these proteins have not been previously linked to stem cells. NRVM‐specific proteins atrial natriuretic factor (ANP) and connective tissue growth factor, and CSC‐specific protein interleukin‐1 receptor‐like 1 (ST2) were found to affect rat CSC proliferation. These findings suggest that relative concentration of each protein may be crucial for cellular intertalk and for the final outcome of cardiac cell therapy.  相似文献   

16.
The pathogenesis of cardiac hypertrophy is tightly associated with activation of intracellular hypertrophic signalling pathways, which leads to the synthesis of various proteins. Tripartite motif 10 (TRIM10) is an E3 ligase with important functions in protein quality control. However, its role in cardiac hypertrophy was unclear. In this study, neonatal rat cardiomyocytes (NRCMs) and TRIM10-knockout mice were subjected to phenylephrine (PE) stimulation or transverse aortic constriction (TAC) to induce cardiac hypertrophy in vitro and in vivo, respectively. Trim10 expression was significantly increased in hypertrophied murine hearts and PE-stimulated NRCMs. Knockdown of TRIM10 in NRCMs alleviated PE-induced changes in the size of cardiomyocytes and hypertrophy gene expression, whereas TRIM10 overexpression aggravated these changes. These results were further verified in TRIM10-knockout mice. Mechanistically, we found that TRIM10 knockout or knockdown decreased AKT phosphorylation. Furthermore, we found that TRIM10 knockout or knockdown increased ubiquitination of phosphatase and tensin homolog (PTEN), which negatively regulated AKT activation. The results of this study reveal the involvement of TRIM10 in pathological cardiac hypertrophy, which may occur by prompting of PTEN ubiquitination and subsequent activation of AKT signalling. Therefore, TRIM10 may be a promising target for treatment of cardiac hypertrophy.  相似文献   

17.
Cardiac hypertrophy is determined by an increase of cell size in cardiomyocytes (CMCs). Among the cellular processes regulating the growth of cell size, the increase of protein synthesis rate represents a critical event. Most of translational factors promoting protein synthesis stimulate cardiac hypertrophy. In contrast, activity of translational repressor factors, in cardiac hypertrophy, is not fully determined yet. Here we report the effect of a translational modulator, eIF6/p27BBP in the hypertrophy of neonatal rat CMCs. The increase of eIF6 levels surprisingly prevent the growth of cell size induced by phenylephrine, through a block of protein synthesis without affecting skeletal rearrangement and ANF mRNA expression. Thus, this work uncovers a new translational cardiac regulator independent by other well-known factors such as mTOR signalling or eIF2β.  相似文献   

18.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and key regulator of cell cycle progression. Since APC/C promotes the degradation of mitotic cyclins, it controls cell cycle‐dependent oscillations in cyclin‐dependent kinase (CDK) activity. Both CDKs and APC/C control a large number of substrates and are regulated by analogous mechanisms, including cofactor‐dependent activation. However, whereas substrate dephosphorylation is known to counteract CDK, it remains largely unknown whether deubiquitinating enzymes (DUBs) antagonize APC/C substrate ubiquitination during mitosis. Here, we demonstrate that Cezanne/OTUD7B is a cell cycle‐regulated DUB that opposes the ubiquitination of APC/C targets. Cezanne is remarkably specific for K11‐linked ubiquitin chains, which are formed by APC/C in mitosis. Accordingly, Cezanne binds established APC/C substrates and reverses their APC/C‐mediated ubiquitination. Cezanne depletion accelerates APC/C substrate degradation and causes errors in mitotic progression and formation of micronuclei. These data highlight the importance of tempered APC/C substrate destruction in maintaining chromosome stability. Furthermore, Cezanne is recurrently amplified and overexpressed in numerous malignancies, suggesting a potential role in genome maintenance and cancer cell proliferation.  相似文献   

19.
Mitogen activated protein kinases (MAPKs) play an important role in activation, differentiation and proliferation of macrophages. Macrophages, upon activation, produce large amounts of nitric oxide that inhibit the growth of variety of microorganisms and tumor cells. This nitric oxide which is known to interfere with tyrosine phosphorylation may result in changes in the pattern of activation of MAPKs. In a previous study we have found that tyrosine phosphorylation of MAPKs was completely abolished in the presence of nitric oxide donor and radiation but this did not affect the function of macrophages. In this study the other post translational modifications namely nitration and ubiquitination of JNK and ERK have been looked at. Both ERK and JNK were found to be nitrated. However, there was no increase in ubiquitination of ERK and JNK, indicating that ubiquitination, in this case was not a natural consequence of nitration and may serve in signaling. Additionally, when the nitration was extensive, phosphorylation was also inhibited. The activation of substrates of ERK and JNK were looked at to determine the consequences of such modifications. Inhibition of phosphorylation and extensive nitration of JNK did not prevent activation of its substrate, c-jun. This study indicates that ERK and JNK may be under regulation by different type of modifications in macrophages.  相似文献   

20.
Mitogen activated protein kinases (MAPKs) play an important role in activation, differentiation and proliferation of macrophages. Macrophages, upon activation, produce large amounts of nitric oxide that inhibit the growth of variety of microorganisms and tumor cells. This nitric oxide which is known to interfere with tyrosine phosphorylation may result in changes in the pattern of activation of MAPKs. In a previous study we have found that tyrosine phosphorylation of MAPKs was completely abolished in the presence of nitric oxide donor and radiation but this did not affect the function of macrophages. In this study the other post translational modifications namely nitration and ubiquitination of JNK and ERK have been looked at. Both ERK and JNK were found to be nitrated. However, there was no increase in ubiquitination of ERK and JNK, indicating that ubiquitination, in this case was not a natural consequence of nitration and may serve in signaling. Additionally, when the nitration was extensive, phosphorylation was also inhibited. The activation of substrates of ERK and JNK were looked at to determine the consequences of such modifications. Inhibition of phosphorylation and extensive nitration of JNK did not prevent activation of its substrate, c-jun. This study indicates that ERK and JNK may be under regulation by different type of modifications in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号