首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

2.
Circular RNAs (circRNAs), often dysregulated in a variety of human diseases, participate in the initiation and development of cancers. Recently, circMTO1 (a circRNA derived from MTO1 gene), identified as a tumor suppressor, has been shown to contribute to the suppression of hepatocellular carcinoma. The present study aimed to explore the clinical significance and roles of circMTO1 in liver fibrosis. Here, we found that serum circMTO1 was significantly down‐regulated in chronic hepatitis B (CHB) patients. Interestingly, serum circMTO1 was negatively correlated with fibrosis stages as well as HAI scores. Receiver operating characteristic curve analysis revealed that serum circMTO1 may serve as a diagnostic biomarker for liver fibrosis in CHB patients. Notably, overexpression of circMTO1 led to the suppression of transforming growth factor‐β1‐induced hepatic stellate cells (HSCs) activation. Bioinformatic analysis and luciferase activity assays indicated that circMTO1 was a target of mircoRNA‐17‐5p (miR‐17‐5p). Data from RNA pull‐down assay further confirmed that circMTO1 interacted with miR‐17‐5p. The inhibitory effects of circMTO1 on HSC activation were suppressed by miR‐17‐5p mimics. Further studies showed that Smad7 was a target of miR‐17‐5p. Moreover, circMTO1‐inhibited HSC activation was also blocked down by loss of Smad7. Taken together, we demonstrate that circMTO1 inhibits liver fibrosis via regulation of miR‐17‐5p and Smad7, and serum circMTO1 may be a novel promising biomarker of liver fibrosis.  相似文献   

3.
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR‐301b‐3p functions as a driver in various types of human cancer. However, the expression pattern of miR‐301b‐3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR‐301b‐3p expression was significantly up‐regulated in HCC tissues compared to adjacent non‐tumour tissues. Clinical association analysis revealed that the high level of miR‐301b‐3p closely correlated with large tumour size and advanced tumour‐node‐metastasis stages. Importantly, the high miR‐301b‐3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR‐301b‐3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR‐301b‐3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR‐301b‐3p directly bond to 3′UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down‐regulated and inversely correlated with miR‐301b‐3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR‐301b‐3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR‐301b‐3p is highly expressed in HCC. miR‐301b‐3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.  相似文献   

4.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

5.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

6.
7.
Pulmonary arterial hypertension (PAH) is featured by the increase in pulmonary vascular resistance and pulmonary arterial pressure. Despite that abnormal proliferation and phenotypic changes in human pulmonary artery smooth muscle cells (HPASMCs) contributing to the pathophysiology of PAH, the underlying molecular mechanisms remain unclear. In the present study, we detected the expression of miR‐629 in hypoxia‐treated HPASMCs and explored the mechanistic role of miR‐629 in regulating HPASMC proliferation, migration and apoptosis. Hypoxia time‐dependently induced up‐regulation of miR‐629 and promoted cell viability and proliferation in HPASMCs. Treatment with miR‐629 mimics promoted HPASMCs proliferation and migration, but inhibited cell apoptosis; while knockdown of miR‐629 suppressed the cell proliferation and migration but promoted cell apoptosis in HPASMCs. The bioinformatics prediction revealed FOXO3 and PERP as downstream targets of miR‐629, and miR‐629 negatively regulated the expression of FOXO3 and PERP via targeting the 3’ untranslated regions. Enforced expression of FOXO3 or PERP attenuated the miR‐629 overexpression or hypoxia‐induced enhanced effects on HPASMC proliferation and proliferation, and the suppressive effects on HPASMC apoptosis. Furthermore, the expression of miR‐629 was up‐regulated, and the expression of FOXO3 and PERP mRNA was down‐regulated in the plasma from PAH patients when compared to healthy controls. In conclusion, the present study provided evidence regarding the novel role of miR‐629 in regulating cell proliferation, migration and apoptosis of HPASMCs during hypoxia.  相似文献   

8.
Long noncoding RNA (lncRNA) has been suggested to play an important role in a variety of diseases over the past decade. In a previous study, we identified a novel lncRNA, termed HOXA11‐AS, which was significantly up‐regulated in calcium oxalate (CaOx) nephrolithiasis. However, the biological function of HOXA11‐AS in CaOx nephrolithiasis remains poorly defined. Here, we demonstrated that HOXA11‐AS was significantly up‐regulated in CaOx nephrolithiasis both in vivo and in vitro. Gain‐/loss‐of‐function studies revealed that HOXA11‐AS inhibited proliferation, promoted apoptosis and aggravated cellular damage in HK‐2 cells exposed to calcium oxalate monohydrate (COM). Further investigations showed that HOXA11‐AS regulated monocyte chemotactic protein 1 (MCP‐1) expression in HK‐2 cell model of CaOx nephrolithiasis. In addition, online bioinformatics analysis and dual‐luciferase reporter assay results showed that miR‐124‐3p directly bound to HOXA11‐AS and the 3'UTR of MCP‐1. Furthermore, rescue experiment results revealed that HOXA11‐AS functioned as a competing endogenous RNA to regulate MCP‐1 expression through sponging miR‐124‐3p and that overexpression of miR‐124‐3p restored the inhibitory effect of proliferation, promotion effects of apoptosis and cell damage induced by HOXA11‐AS overexpression. Taken together, HOXA11‐AS mediated CaOx crystal–induced renal inflammation via the miR‐124‐3p/MCP‐1 axis, and this outcome may provide a good potential therapeutic target for nephrolithiasis.  相似文献   

9.
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.  相似文献   

10.
The aberrant expression and dysfunction of long non‐coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B‐cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour‐promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI‐LY7 cells. Mechanistically, SNHG16 directly interacted with miR‐497‐5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR‐497‐5p in DLBCL cells. Moreover, the proto‐oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR‐497‐5p. SNHG16 overexpression rescued miR‐497‐5p‐induced down‐regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown‐induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI‐LY7 cells. Our study suggests that the SNHG16/miR‐497‐5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.  相似文献   

11.
12.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

13.
Age‐related cataract (ARC) is caused by the exposure of the lens to UVB which promotes oxidative damage and cell death. This study aimed to explore the role of lncRNA H19 in oxidative damage repair in early ARC. lncRNAs sequencing technique was used to identify different lncRNAs in the lens of early ARC patients. Human lens epithelial cells (HLECs) were exposed to ultraviolet irradiation; and 8‐OHdG ELISA, Cell counting kit 8 (CCK8), EDU, flow cytometry and TUNEL assays were used to detect DNA damage, cell viability, proliferation and apoptosis. Luciferase assay was used to examine the interaction among H19, miR‐29a and thymine DNA glycosylase (TDG) 3'UTR. We found that lncRNA H19 and TDG were highly expressed while miR‐29a was down‐regulated in the three types of early ARC and HLECs exposed to ultraviolet irradiation, compared to respective controls. lncRNA H19 knockdown aggravated oxidative damage, reduced cell viability and proliferation, and promoted apoptosis in HLECs, while lncRNA H19 overexpression led to opposite effects in HLECs. Mechanistically, miR‐29a bound TDG 3'UTR to repress TDG expression. lncRNA H19 up‐regulated the expression of TDG by repressing miR‐29a because it acted as ceRNA through sponging miR‐29a. In conclusion, the interaction among lncRNA H19, miR‐29a and TDG is involved in early ARC. lncRNA H19 could be a useful marker of early ARC and oxidative damage repair pathway of lncRNA H19/miR‐29a/TDG may be a promising target for the treatment of ARC.  相似文献   

14.
Both SIRT1 and UVA radiation are involved in cellular damage processes such as apoptosis, senescence and ageing. MicroRNAs (miRNAs) have been reported to be closely related to UV radiation, as well as to SIRT1. In this study, we investigated the connections among SIRT1, UVA and miRNA in human skin primary fibroblasts. Our results showed that UVA altered the protein level of SIRT1 in a time point–dependent manner. Using miRNA microarray, bioinformatics analysis, we found that knocking down SIRT1 could cause up‐regulation of miR‐27a‐5p and the latter could down‐regulate SMAD2, and these results were verified by qRT‐PCR or Western blot. Furthermore, UVA radiation (5 J/cm2), knocking down SIRT1 or overexpression of miR‐27a‐5p led to increased expression of MMP1, and decreased expressions of COL1 and BCL2. We also found additive impacts on MMP1, COL1 and BCL2 under the combination of UVA radiation + Sirtinol (SIRT1 inhibitor), or UVA radiation + miR‐27a‐5p mimic. SIRT1 activator resveratrol could reverse damage changes caused by UVA radiation. Besides, absent of SIRT1 or overexpression of miR‐27a‐5p increased cell apoptosis and induced cell arrest in G2/M phase. Taken together, these results demonstrated that UVA could influence a novel SIRT1‐miR‐27a‐5p‐SMAD2‐MMP1/COL1/BCL2 axis in skin primary fibroblasts, and may provide potential therapeutic targets for UVA‐induced skin damage.  相似文献   

15.
miR‐9 has been reported to play a pivotal role in multiple human cancers by acting as an oncogene or tumor suppressor. In this study, we explored the possible role and molecular mechanism of miR‐9 in multiple myeloma (MM). The miR‐9 expression was examined by quantitative real‐time polymerase chain reaction assay. Transfection with miR‐9‐mimics, miR‐9‐inhibitor, pcDNA‐TRIM56, or si‐TRIM56 into cells was used to change the expression levels of miR‐9 and TRIM56. Western blot analysis was used to detect the expression of TRIM56, p65, p‐p65, IκBα, and p‐IκBα. The potential target of miR‐9 was confirmed by luciferase reporter assay. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium (MTT) assay, colony formation assay, and flow cytometry were used to assess the abilities of cell proliferation and apoptosis. miR‐9 was upregulated in MM patients and cell lines, and miR‐9 overexpression promoted proliferation and repressed apoptosis in MM cell lines. TRIM56 was confirmed as a target of miR‐9. Moreover, TRIM56 reversed miR‐9‐mediated pro‐proliferation and anti‐apoptosis effect on MM cell lines. Furthermore, nuclear factor‐κB (NF‐κB) pathway was involved in miR‐9/TRIM56‐mediated regulation on MM cell lines. miR‐9 promoted the development and progression of MM by regulating TRIM56/NF‐κB pathway, thereby providing a potential microRNA‐based target for MM therapy.  相似文献   

16.
The present study investigated the role of long non‐coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in the human aortic smooth muscle cell (HASMC) proliferation and migration and explored the potential link between SNHG16 and atherosclerosis. Our results showed that platelet‐derived growth factor (PDGF)‐bb treatment promoted cell proliferation and migration with concurrent up‐regulation of SNHG16 in HASMCs. Small nucleolar RNA host gene 16 overexpression promoted HASMC proliferation and migration, while SNHG16 knockdown suppressed cell proliferation and migration in PDGF‐bb‐stimulated HASMCs. The bioinformatic analyses showed that SNHG16 possessed the complementary binding sequence with miR‐205, where the interaction was confirmed by luciferase reporter assay and RNA pull‐down assay in HASMCs, and SNHG16 inversely regulated miR‐205 expression. MiR‐205 overexpression attenuated the enhanced effects of PDGF‐bb treatment on HASMC proliferation and migration. Moreover, Smad2 was targeted and inversely regulated by miR‐205, while being positively regulated by SNHG16 in HASMCs. Smad2 knockdown attenuated PDGF‐bb‐mediated actions on HASMC proliferation and migration. Both miR‐205 overexpression and Smad2 knockdown partially reversed the effects of SNHG16 overexpression on HASMC proliferation and migration. Moreover, SNHG16 and Smad2 mRNA were up‐regulated, while miR‐205 was down‐regulated in the plasma from patients with atherosclerosis. Small nucleolar RNA host gene 16 expression was inversely correlated with miR‐205 expression and positively correlated with Smad2 expression in the plasma from atherosclerotic patients. In conclusion, our data showed the up‐regulation of SNHG16 in pathogenic‐stimulated HASMCs and clinical samples from atherosclerotic patients. Small nucleolar RNA host gene 16 regulated HASMC proliferation and migration possibly via regulating Smad2 expression by acting as a competing endogenous RNA for miR‐205.  相似文献   

17.
18.
The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR‐483‐5p and miR‐483‐3p, which originate from miR‐483, are up‐regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR‐483‐5p/3p is partially down‐regulated in HCC samples and is down‐regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR‐483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR‐483 in vivo inhibits mouse liver fibrosis induced by CCl4. We demonstrate that miR‐483‐5p/3p acts together to target two pro‐fibrosis factors, platelet‐derived growth factor‐β and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX‐2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.  相似文献   

19.
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号