首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 8 毫秒
1.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   

2.
The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes.  相似文献   

3.
Micro‐RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end‐stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal‐Network, miRNA‐GO‐Network and miRNA‐Gene‐Network. According to the fold change in the network and probability values in the microarray cohort, RT‐PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR‐340 achieved statistically significant. miR‐340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR‐340 in cultured neonatal rat cardiomyocytes to identify whether miR‐340 plays a determining role in the progression of heart failure. ANP, BNP and caspase‐3 were significantly elevated in the miR‐340 transfected cells compared with controls (P < 0.05). The cross‐sectional area of overexpressing miR‐340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end‐stage heart failure and identified miR‐340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.  相似文献   

4.
Although past studies observed the changes of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in end‐stage heart failure (HF) patients, a consistent and clear pattern of type‐specific MMPs and/or TIMPs has yet to be further defined. In this study, proteomic approach of human protein antibody arrays was used to compare MMP and TIMP expression levels of left ventricular (LV) myocardial samples from end‐stage HF patients due to dilated cardiomyopathy (DCM) with those from age‐ and sex‐ matched non‐failing patients. Western blot analysis, immunohistochemistry and ELISA were used for validation of our results. We observed that MMP‐10 and ‐7 abundance increased, accompanied by decreased TIMP‐4 in DCM failing hearts (n= 8) compared with non‐failing hearts (n= 8). The results were further validated in a cohort of 34 end‐stage HF patients derived from three forms of cardiomyopathies. Cardiac and plasma MMP‐10 levels were positively correlated with the LV end‐diastolic dimension in this HF cohort. In addition, we observed that insulin‐like growth factor‐2 promoted MMP‐10 production in neonatal rat cardiomyocytes. In conclusion, this study demonstrated a selective up‐regulation of MMP‐10 and ‐7 along with a discordant change of TIMP‐4, and a positive correlation between MMP‐10 levels and the degree of LV dilation in end‐stage HF patients. Our findings suggest that type‐specific dysregulation of MMPs and TIMPs is associated with LV remodelling in end‐stage HF patients, and MMP‐10 may act as a novel biomarker for LV remodelling.  相似文献   

5.
6.
7.
Myocardial hibernation (MH) is a well‐known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle‐ejection fraction (LV‐EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter‐ventricular septum (IVS) and antero‐lateral free wall (FW) were transmurally (i.e. sub‐epicardial, mesocardial and sub‐endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U‐shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub‐endocardial and sub‐epicardial layers of DCM as compared with ICM. HIF1‐α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM‐LV and ICM‐LV myocardium. The proteomic profile was overlapping by ~50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end‐stage ICM as well as in end‐stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM.  相似文献   

8.
Growth differentiation factor (GDF)‐15 and soluble ST2 (sST2) are established prognostic markers in acute and chronic heart failure. Assessment of these biomarkers might improve arrhythmic risk stratification of patients with non‐ischaemic, dilated cardiomyopathy (DCM) based on left ventricular ejection fraction (LVEF). We studied the prognostic value of GDF‐15 and sST2 for prediction of arrhythmic death (AD) and all‐cause mortality in patients with DCM. We prospectively enrolled 52 patients with DCM and LVEF ≤ 50%. Primary end‐points were time to AD or resuscitated cardiac arrest (RCA), and secondary end‐point was all‐cause mortality. The median follow‐up time was 7 years. A cardiac death was observed in 20 patients, where 10 patients had an AD and 2 patients had a RCA. One patient died a non‐cardiac death. GDF‐15, but not sST2, was associated with increased risk of the AD/RCA with a hazard ratio (HR) of 2.1 (95% CI = 1.1‐4.3; P = .031). GDF‐15 remained an independent predictor of AD/RCA after adjustment for LVEF with adjusted HR of 2.2 (95% CI = 1.1‐4.5; P = .028). Both GDF‐15 and sST2 were independent predictors of all‐cause mortality (adjusted HR = 2.4; 95% CI = 1.4‐4.2; P = .003 vs HR = 1.6; 95% CI = 1.05‐2.7; P = .030). In a model including GDF‐15, sST2, LVEF and NYHA functional class, only GDF‐15 was significantly associated with the secondary end‐point (adjusted HR = 2.2; 95% CI = 1.05‐5.2; P = .038). GDF‐15 is superior to sST2 in prediction of fatal arrhythmic events and all‐cause mortality in DCM. Assessment of GDF‐15 could provide additional information on top of LVEF and help identifying patients at risk of arrhythmic death.  相似文献   

9.
10.
Aggregation, incorrect folding and low stability are common obstacles for protein structure determination, and are often discovered at a very late state of protein production. In many cases, however, the reasons for failure to obtain diffracting crystals remain entirely unknown. We report on the contribution of systematic biophysical characterization to the success in structural determination of human proteins of unknown fold. Routine analysis using dynamic light scattering (DLS), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) was employed to evaluate fold and stability of 263 purified protein samples (98 different human proteins). We found that FTIR-monitored temperature scanning may be used to detect incorrect folding and discovered a positive correlation between unfolding enthalpy measured with DSC and the size of small, globular proteins that may be used to estimate the quality of protein preparations. Furthermore, our work establishes that the risk of aggregation during concentration of proteins may be reduced through DLS monitoring. In summary, our study demonstrates that biophysical characterization provides an ideal tool to facilitate quality management for structural biology and many other areas of biological research.  相似文献   

11.
12.
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end‐stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post‐myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5‐3 conjugated to TAT47–57 carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT47–57 carrier peptide alone). Formalin‐fixed mid‐ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two‐fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodelling mediated by the TGF‐SMAD signalling pathway. Therefore, sustained selective inhibition of PKCβII in a post‐MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.  相似文献   

13.
The heterodimer HIF‐1α (hypoxia inducible factor)/HIF‐β (also known as ARNT‐aryl hydrocarbon nuclear translocator) is a key mediator of cellular response to hypoxia. The interaction between these monomer units can be modified by the action of small molecules in the binding interface between their C‐terminal heterodimerization (PasB) domains. Taking advantage of the presence of several cysteine residues located in the allosteric cavity of HIF‐1α PasB domain, we applied a cysteine‐based reactomics “hotspot identification” strategy to locate regions of HIF‐1α PasB domain critical for its interaction with ARNT. COMPOUND 5 was identified using a mass spectrometry‐based primary screening strategy and was shown to react specifically with Cys255 of the HIF‐1α PasB domain. Biophysical characterization of the interaction between PasB domains of HIF‐1α and ARNT revealed that covalent binding of COMPOUND 5 to Cys255 reduced binding affinity between HIF‐1α and ARNT PasB domains approximately 10‐fold. Detailed NMR structural analysis of HIF‐1α‐PasB‐COMPOUND 5 conjugate showed significant local conformation changes in the HIF‐1α associated with key residues involved in the HIF‐1α/ARNT PasB domain interaction as revealed by the crystal structure of the HIF‐1α/ARNT PasB heterodimer. Our screening strategy could be applied to other targets to identify pockets surrounding reactive cysteines suitable for development of small molecule modulators of protein function.  相似文献   

14.
Dihydropyrimidinase is involved in the reductive pathway of pyrimidine degradation, catalysing the reversible hydrolysis of the cyclic amide bond (–CO–NH–) of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamoyl-β-amino acids. This enzyme is an attractive candidate for commercial production of D-amino acids, which are used in the production of semi-synthetic β-lactams, antiviral agents, artificial sweeteners, peptide hormones and pesticides. We have obtained the crystal structure of the dihydropyrimidinase from Sinorhizobium meliloti (SmelDhp) in the presence of zinc ions, but we have not been able to obtain good diffracting crystals in its absence. Then, the role of the ion in the structure of the protein, and in its stability, remains to be elucidated. In this work, the stability and the structure of SmelDhp have been studied in the absence and in the presence of zinc. In its absence, the protein acquired a tetrameric functional structure at pH ∼ 6.0, which is stable up to pH ∼ 9.0, as concluded from fluorescence and CD. Chemical-denaturation occurred via a monomeric intermediate with non-native structure. The addition of zinc caused: (i) an increase of the helical structure, and changes in the environment of aromatic residues; and, (ii) a higher thermal stability. However, chemical-denaturation still occurred through a monomeric intermediate. This is the first hydantoinase whose changes in the stability and in the secondary structure upon addition of zinc are described and explained, and one of the few examples where the zinc exclusively alters the secondary helical structure and the environment of some aromatic residues in the protein, leaving unchanged the quaternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号