首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular histones released from cells during acute inflammation contribute to organ failure and death in a mouse model of sepsis, and histones are known to exert in vitro cytotoxicity in the absence of serum. Since addition of histones to serum and plasma is known to induce protein aggregation, we reasoned that plasma proteins may afford protection from cytotoxicity. We found that MODE‐K mouse small intestinal epithelial cells were protected from histone‐induced toxicity in the presence of 10% FCS. Therefore, the main aim of this study was to identify histone‐interacting plasma proteins that might be involved in cytoprotection. The precipitate formed following addition of calf thymus histones to human EDTA plasma was characterised by shotgun proteomics, identifying a total of 36 protein subunits, including complement components, coagulation factors, protease inhibitors and apolipoproteins. The highly sulphated glycosaminoglycan heparin inhibited histone‐induced plasma protein aggregation. Moreover, histones bound to heparin agarose were capable of pulling down plasma proteins from solution, indicating their effective cross‐linking properties. It was particularly notable that inter‐α‐trypsin inhibitor was prominent among the histone‐precipitated proteins, since it contains a chondroitin sulphate glycan chain, and suggests a potential role for this protein in histone sequestration during acute inflammation in vivo.  相似文献   

2.
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.  相似文献   

3.
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.  相似文献   

4.
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone‐mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose‐dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase‐2 (COX‐2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX‐1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX‐2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial‐dependent mediators through an up‐regulation in COX‐2‐PGIS‐PGI2 pathway which involves a COX‐2‐dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone‐mediated pathologies.  相似文献   

5.
The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest–specific gene 6 (Gas6) and milk fat globule–epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble αvβ5 integrin and Mer, but not with αvβ3, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury.  相似文献   

6.
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.  相似文献   

7.
Multiple organ dysfunction syndrome (MODS) is an important cause of morbidity and mortality in intensive care unit. A severe insult in the form of infection or trauma primes the host immune system so that a subsequent, relatively trivial insult produces systemic inflammation response syndrome, which can lead to MODS and death. Matrix metalloproteinase-9 (MMP-9) is stored in the tertiary granules of polymorphonuclear leukocytes. These cells are key effectors in acute inflammatory diseases, such as sepsis and MODS. Endotoxin leads to rapid release of MMP-9 from these granules in vitro and in vivo. However, the role of this enzyme in MODS, and whether it is associated with organ injury at the early stage of MODS remains unclear. This present work may study role of MMP-9 with the MODS rats that caused by trauma and infection and investigate the mechanism of organ injury at the early stage of MODS. Here, we developed a rat model for MODS caused by trauma and infection and analyzed the dynamic level of MMP-9 and determined the relationship between MMP-9 level and early phase of organ injury in MODS rat. The histological changes in pulmonary, renal, and hepatic tissue were observed by light microscope. The expressions of plasma MMP-9 proteins were detected by an enzyme linked immunosorbent assay and its levels in the pulmonary, renal, and hepatic tissue were detected by using immunohistochemistry, respectively. The results indicated that there were no significant improvements in histopathology of rats in control group. However, the pulmonary, renal, and hepatic damage were serious in MODS groups. The concentration of MMP-9 in plasma and tissues of MODS rats increased markedly at the early stage and were higher than that of the control group. Moreover, the MMP-9 level in plasma positively correlated with the levels of pulmonary, renal, and hepatic tissue. This study clearly shows that MMP-9 is good biomarker to predict the severity of injury organ at the early phase of MODS.  相似文献   

8.
Lipopolysaccharide (LPS) is a major microbial mediator for tissue injury and sepsis resulting from Gram‐negative bacterial infection. LPS is an external factor that induces robust expression of serum amyloid A (SAA), a major constituent of the acute‐phase proteins, but the relationship between SAA expression and LPS‐induced tissue injury remains unclear. Here, we report that mice with inducible transgenic expression of human SAA1 are partially protected against inflammatory response and lung injury caused by LPS and cecal ligation and puncture (CLP). In comparison, transgenic SAA1 does not attenuate TNFα‐induced lung inflammation and injury. The SAA1 expression level correlates inversely with the endotoxin concentrations in serum and lung tissues since SAA1 binds directly to LPS to form a complex that promotes LPS uptake by macrophages. Disruption of the SAA1‐LPS interaction with a SAA1‐derived peptide partially reduces the protective effect and exacerbates inflammation. These findings demonstrate that acute‐phase SAA provides innate feedback protection against LPS‐induced inflammation and tissue injury.  相似文献   

9.
Eltzschig HK  Eckle T 《Nature medicine》2011,17(11):1391-1401
Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic, vascular and general surgery. An imbalance in metabolic supply and demand within the ischemic organ results in profound tissue hypoxia and microvascular dysfunction. Subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Recent advances in understanding the molecular and immunological consequences of ischemia and reperfusion may lead to innovative therapeutic strategies for treating patients with ischemia and reperfusion-associated tissue inflammation and organ dysfunction.  相似文献   

10.
Sessile animals, like corals, frequently suffer physical injury from a variety of sources, thus wound-healing mechanisms that restore tissue integrity and prevent infection are vitally important for defence. Despite the ecological importance of reef-building corals, little is known about the cells and processes involved in wound healing in this group or in phylogenetically basal metazoans in general. A histological investigation into wound healing of the scleractinian coral Porites cylindrica at 0 h, 6 h, 24 h and 48 h after injury revealed differences in cellular components between injured and healthy tissues. Cell counts of the obligate endosymbiont, Symbiodinium, and melanin volume fraction analysis revealed rapid declines in both Symbiodinium abundance and tissue cross-sectional area occupied by melanin-containing granular cells after injury. Four phases of wound healing were identified, which are similar to phases described for both vertebrates and invertebrates. The four phases included (i) plug formation via the degranulation of melanin-containing granular cells; (ii) immune cell infiltration (inflammation); (iii) granular tissue formation (proliferation); and (iv) maturation. This study provides detailed documentation of the processes involved in scleractinian wound healing for the first time and further elucidates the roles of previously-described immune cells, such as fibroblasts. These results demonstrate the conservation of wound healing processes from anthozoans to humans.  相似文献   

11.
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.Subject terms: Cell death and immune response, Apoptosis  相似文献   

12.
Fibrosis or scarring of diverse organs and tissues is considered as a pathologic consequence of a chronically altered wound healing response which is tightly linked to inflammation and angiogenesis. The recruitment of immune cells, local proliferation of fibroblasts and the consecutive accumulation of extracellular matrix proteins are common pathophysiological hallmarks of tissue fibrosis, irrespective of the organ involved. Chemokines, a family of chemotactic cytokines, appear to be central mediators of the initiation as well as progression of these biological processes. Traditionally chemokines have only been considered to play a critical role in orchestrating the influx of immune cells to sites of tissue injury. However, within the last years, further aspects of chemokine biology including fibroblast activation and angiogenesis have been deciphered in tissue fibrosis of many different organs. Interestingly, certain chemokines appear to mediate common effects in liver, kidney, lung, and skin of various animal models, while others mediate tissue specific effects. These aspects have to be kept in mind when extrapolating data of animal studies to early human trials. Nevertheless, the further understanding of chemokine effects in tissue fibrosis might be an attractive approach for identifying novel therapeutic targets in chronic organ damage associated with high morbidity and mortality. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

13.
In response to cell injury, caused, for example, by trauma, several processes must be initiated simultaneously to achieve an acute inflammatory response designed to prevent sustained tissue damage and infection and to restore and maintain tissue homeostasis. Detecting cell injury is facilitated by the fact that damaged cells release intracellular molecules not normally present in the extracellular space. However, potential underlying mechanisms for the recognition of endogenous danger signals released upon cell injury have yet to be elucidated. In this study, we demonstrate that mast cells, potent promoters of acute inflammation, play a key role in responding to cell injury by recognizing IL-33 released from necrotic structural cells. In an in vitro model of cell injury, this recognition was shown to involve the T1/ST2 receptor and result in the secretion of proinflammatory leukotrienes and cytokines by mouse mast cells. Remarkably, of all of the components released upon necrosis, our results show that IL-33 alone is a key component responsible for initiating proinflammatory responses in mast cells reacting to cell injury. Our findings identify IL-33 as a key danger signal released by necrotic structural cells capable of activating mast cells, thus providing novel insights concerning the role of mast cells as sensors of cell injury.  相似文献   

14.
Stem cell therapy is not a new field, as indicated by the success of hematopoietic stem cell reconstitution for various hematological malignancies and immune-mediated disorders. In the case of tissue repair, the major issue is whether stem cells should be implanted, regardless of the type and degree of injury. Mesenchymal stem cells have thus far shown evidence of safety, based on numerous clinical trials, particularly for immune-mediated disorders. The premise behind these trials is to regulate the stimulatory immune responses negatively. To apply stem cells for other disorders, such as acute injuries caused by insults from surgical trauma and myocardial infarction, would require other scientific considerations. This does not imply that such injuries are not accompanied by immune responses. Indeed, acute injuries could accompany infiltration of immune cells to the sites of injuries. The implantation of stem cells within a milieu of inflammation will establish an immediate crosstalk among the stem cells, microenvironmental molecules, and resident and infiltrating immune cells. The responses at the microenvironment of tissue injury could affect distant and nearby organs. This editorial argues that the microenvironment of any tissue injury is a key consideration for effective stem cell therapy.  相似文献   

15.
Physiological and pathological impact of exosomes of adipose tissue   总被引:2,自引:0,他引:2       下载免费PDF全文
Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell‐cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity‐related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.  相似文献   

16.
Better understanding of the acute/chronic inflammation in airways is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Local lung inflammation is triggered by many mechanisms within the lung, including pathogens. In this study, a cellular automata based model (CA) for pulmonary inflammation that incorporates biophysical processes during inflammatory responses was developed. The developed CA results in three possible outcomes related to homeostasis (healing), persistent infection, and resolved infection with high inflammation (inflamed state). The results from the model are validated qualitatively against other existing computational models. A sensitivity analysis was conducted on the model parameters and the outcomes were assessed. Overall, the model results showed possible outcomes that have been seen in clinical practice and animal models. The present model can be extended to include inflammation resulting from damage tissue and eventually to model inflammation resulting from acute lung injury and multiple organ dysfunction syndromes in critical illness and injury.  相似文献   

17.
Emerging studies suggest an important role for the innate immune response in replication-defective adenovirus (Ad)-mediated acute liver toxicity. Specifically, classical innate immune cells (including NK cells, neutrophils, and Kupffer cells) have all been implicated in the development of Ad-mediated acute liver toxicity. The nonclassical innate immune T cell, the gammadeltaT cell, has been implicated in the pathophysiology of several viral infections that predominantly affect the mucosa and brain, but the specific role in the pathology of AdLacZ-mediated acute liver inflammation and injury as well as accompanying vector clearance is largely unknown. In the present study, we demonstrated that a CXCL9-CXCR3-dependent mechanism governed the accumulation of gammadeltaT cells in the livers of mice infected with Ad expressing the Escherichia coli LacZ gene (AdLacZ). We also showed a critical role for gammadeltaT cells in initiating acute liver toxicity after AdLacZ administration, driven in part by the ability of gammadeltaT cells to promote the recruitment of the conventional T cell, the CD8(+) T cell, into the liver. Furthermore, reduced hepatic injury in AdLacZ-infected gammadeltaT-cell-deficient mice was associated with lower hepatic levels of gamma interferon (IFN-gamma) and CXCL9, an IFN-gamma-inducible chemokine. Finally, our study highlighted a key role for IFN-gamma and CXCL9 cross talk acting in a feedback loop to drive the proinflammatory effects of gammadeltaT cells during AdLacZ-mediated acute liver toxicity. Specifically, intracellular IFN-gamma produced by activated hepatic gammadeltaT cells interacts with hepatocytes to mediate hepatic CXCL9 production, with the consequent accumulation of CXCR3-bearing gammadeltaT cells in the liver to cause acute liver damage without vector clearance.  相似文献   

18.
Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.  相似文献   

19.
In the last several decades, apoptosis interference has been considered clinically irrelevant in the context of renal injury. Recent discovery of programmed necrotic cell death, including necroptosis, ferroptosis, and pyroptosis refreshed our understanding of the role of cell death in kidney disease. Pyroptosis is characterized by a lytic pro- inflammatory type of cell death resulting from gasdermin-induced membrane permeabilization via activation of inflammatory caspases and inflammasomes. The danger-associated molecular patterns (DAMPs), alarmins and pro-inflammatory cytokines are released from pyroptotic cells in an uncontrolled manner, which provoke inflammation, resulting in secondary organ or tissue injuries. The caspases and inflammasome activation-related proteins and pore-forming effector proteins known as GSDMD and GSDME have been implicated in a variety of acute and chronic microbial and non-microbial kidney diseases. Here, we review the recent advances in pathological mechanisms of pyroptosis in kidney disease and highlight the potential therapeutic strategies in future.  相似文献   

20.
In chronic pancreatitis (CP), persistent activation of pancreatic stellate cells (PSC) converts wound healing into a pathological process resulting in organ fibrosis. Here, we have analysed senescence as a novel mechanism involved in the termination of PSC activation and tissue repair. PSC senescence was first studied in vitro by establishing long‐term cultures and by applying chemical triggers, using senescence‐associated β‐Galactosidase (SA β‐Gal) as a surrogate marker. Subsequently, susceptibility of PSC to immune cell‐mediated cytolysis was investigated employing cocultures. Using the model of dibutyltin dichloride‐induced CP in rats, appearance of senescent cells was monitored by immunohistochemistry and immunofluorescence, and correlated with the progression of tissue damage and repair, immune cell infiltration and fibrosis. The results indicated that long‐term culture and exposure of PSC to stressors (doxorubicin, H2O2 and staurosporine) induced senescence. Senescent PSC highly expressed CDKN1A/p21, mdm2 and interleukin (IL)‐6, but displayed low levels of α‐smooth muscle actin. Senescence increased the susceptibility of PSC to cytolysis. In CP, the number of senescent cells correlated with the severity of inflammation and the extension of fibrosis. Areas staining positive for SA β‐Gal overlapped with regions of fibrosis and dense infiltrates of immune cells. Furthermore, a close physical proximity of immune cells and activated PSC was observed. We conclude that inflammation, PSC activation and cellular senescence are timely coupled processes which take place in the same microenvironment of the inflamed pancreas. Lymphocytes may play a dual‐specific role in pancreatic fibrogenesis, triggering both the initiation of wound healing by activating PSC, and its completion by killing senescent stellate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号