共查询到20条相似文献,搜索用时 15 毫秒
1.
Kwang Hwa Jung Jeong Kyu Kim Ji Heon Noh Jung Woo Eun Hyun Jin Bae Hong Jian Xie Young Min Ahn Won Sang Park Jung Young Lee Suk Woo Nam 《Journal of cellular biochemistry》2010,110(3):687-696
The Wnt/β‐catenin signaling pathway regulates various aspects of development and plays important role in human carcinogenesis. Nemo‐like kinase (NLK), which is mediator of Wnt/β‐catenin signaling pathway, phosphorylates T‐cell factor/lymphoid enhancer factor (TCF/LEF) factor and inhibits interaction of β‐catenin/TCF complex. Although, NLK is known to be a tumor suppressor in Wnt/β‐catenin signaling pathway of colon cancer, the other events occurring downstream of NLK pathways in other types of cancer remain unclear. In the present study, we identified that expression of NLK was significantly up‐regulated in the HCCs compared to corresponding normal tissues in five selected tissue samples. Immunohistochemical analysis showed significant over‐expression of NLK in the HCCs. Targeted‐disruption of NLK suppressed cell growth and arrested cell cycle transition. Suppression of NLK elicited anti‐mitogenic properties of the Hep3B cells by simultaneous inhibition of cyclinD1 and CDK2. The results of this study suggest that NLK is aberrantly regulated in HCC, which might contribute to the mitogenic potential of tumor cells during the initiation and progression of hepatocellular carcinoma; this process appears to involve the induction of CDK2 and cyclin D1 and might provide a novel target for therapeutic intervention in patients with liver cancer. J. Cell. Biochem. 110: 687–696, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
2.
Knockdown of long non‐coding RNA ANRIL inhibits proliferation,migration, and invasion but promotes apoptosis of human glioma cells by upregulation of miR‐34a 下载免费PDF全文
Xuechao Dong Zheng Jin Yong Chen Haiyang Xu Chengyuan Ma Xinyu Hong Yunqian Li Gang Zhao 《Journal of cellular biochemistry》2018,119(3):2708-2718
3.
4.
Camila Ferreira Sales Rafael Magno Costa Melo Ana Paula Barbosa Pinheiro Ronald Kennedy Luz Nilo Bazzoli Elizete Rizzo 《Molecular reproduction and development》2019,86(11):1592-1602
Follicular atresia is a hormonally controlled degenerative process involving apoptosis of the somatic and germ cells. Since different signaling pathways can induce cell death, the aim of the present study was to investigate cell death signaling and crosstalk between autophagic, apoptotic, and lysosomal proteins during follicular atresia in Nile tilapia. For this, females were kept in controlled conditions for 21 days, and ovary samples were collected weekly. The atretic follicles (AF) were analyzed in three regression phases: Early, advanced, and late. Under electron microscopy, the follicular cells exhibited numerous protein synthesis organelles in the early AF. Immunoreactivity for Bcl2, Beclin1, Lc3, and Cathepsin D increased significantly in advanced AF (p < .001), when follicular cells were in intense yolk phagocytosis. In this phase, autophagosomes and autolysosomes were frequently observed. In the late AF, follicular cells had a markedly electron‐lucid cytoplasm and immunoreactivity for Bax and TUNEL assay indicated an elevated apoptosis rate. Colocalisation of Lamp1/Cathepsin D and Lc3/Caspase‐3 suggests dynamic crosstalk between the autophagy, apoptosis, and lysosome pathways. Taken together, the data indicate that autophagy plays a role in the homeostasis and clearance of the follicular cells preceding Cathepsin D mediated apoptosis during follicular atresia in Nile tilapia. 相似文献
5.
High glucose concentration induces endothelial cell proliferation by regulating cyclin‐D2‐related miR‐98 下载免费PDF全文
Xin‐Xin Li Yue‐Mei Liu You‐Jie Li Ning Xie Yun‐Fei Yan Yong‐Liang Chi Ling Zhou Shu‐Yang Xie Ping‐Yu Wang 《Journal of cellular and molecular medicine》2016,20(6):1159-1169
Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin‐D2‐regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p‐RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2‐3′ untranslated region is targeted by miR‐98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p‐RB1 expression was regulated by miR‐98. The results indicated that miR‐98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR‐98 might be related to regulation of Bcl‐2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR‐98 decreased in 4.5 g/l glucose‐treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR‐98 significantly decreased in aortas of established streptozotocin (STZ)‐induced diabetic rat model compared with that in control rats; but cyclin D2 and p‐RB1 levels remarkably increased in aortas of STZ‐induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up‐regulation and miR‐98 down‐regulation in the RAOECs. By regulating cyclin D2, miR‐98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. 相似文献
6.
Mingyue Zhao Jieting Zhang Wenqing Huang Jianda Dong Jinghui Guo Kin Pong U ZhiHui Weng Si Liu Hsiao Chang Chan Hua Feng Xiaohua Jiang 《Journal of cellular and molecular medicine》2020,24(13):7301-7312
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP‐activated Cl‐ channel, is extensively expressed in the epithelial cells of various tissues and organs. Accumulating evidence indicates that aberrant expression or mutation of CFTR is related to carcinoma development. Malignant gliomas are the most common and aggressive intracranial tumours; however, the role of CFTR in the development of malignant gliomas is unclear. Here, we report that CFTR is expressed in malignant glioma cell lines. Suppression of CFTR channel function or knockdown of CFTR suppresses glioma cell viability whereas overexpression of CFTR promotes it. Additionally, overexpression of CFTR suppresses apoptosis and promotes glioma progression in both subcutaneous and orthotopic xenograft models. Cystic fibrosis transmembrane conductance regulator activates Akt/Bcl2 pathway, and suppression of PI3K/Akt pathway abolishes CFTR overexpression–induced up‐regulation of Bcl2 (MK‐2206 and LY294002) and cell viability (MK‐2206). More importantly, the protein expression level of CFTR is significantly increased in glioblastoma patient samples. Altogether, our study has revealed a mechanism by which CFTR promotes glioma progression via up‐regulation of Akt/Bcl2‐mediated anti‐apoptotic pathway, which warrants future studies into the potential of using CFTR as a therapeutic target for glioma treatment. 相似文献
7.
8.
9.
Keeping in view the micromanagement of immune response by micro RNAs, the present study was directed to explore the role of miR‐2909 in the differentiation and maturation of T‐lymphocytes within the population of normal human peripheral blood mononuclear cells maintained in in vitro culture. The results of such a study revealed that miR‐2909 had the inherent capacity to significantly increase Treg (CD4+CD25+Foxp3+) cell population and dominant Th1‐type cytokine (especially with decrease in IL‐4 level and higher levels of INF‐β and INF‐γ) profile. Based upon these results, we propose that miR‐2909 may modulate native immunity in general and help in providing protective immunity against viral infections in particular. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
10.
Einat Zalckvar Hanna Berissi Liat Mizrachy Yulia Idelchuk Itay Koren Miriam Eisenstein Helena Sabanay Ronit Pinkas‐Kramarski Adi Kimchi 《EMBO reports》2009,10(3):285-292
Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3‐domain‐only protein that binds to Bcl‐2 anti‐apoptotic family members. The dissociation of beclin 1 from its Bcl‐2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled. Here, we show that death‐associated protein kinase (DAPK) regulates this process. The activated form of DAPK triggers autophagy in a beclin‐1‐dependent manner. DAPK phosphorylates beclin 1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes the dissociation of beclin 1 from Bcl‐XL and the induction of autophagy. These results reveal a substrate for DAPK that acts as one of the core proteins of the autophagic machinery, and they provide a new phosphorylation‐based mechanism that reduces the interaction of beclin 1 with its inhibitors to activate the autophagic machinery. 相似文献
11.
12.
13.
14.
15.
Wei‐Pin Ho Wing‐Pong Chan Ming‐Shium Hsieh Ruei‐Ming Chen 《Journal of cellular biochemistry》2009,108(5):1084-1093
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
16.
Sunkai Ling Yanru He Xiaoxue Li Mingyue Hu Yu Ma Yuan Li Zipeng Lu Shanshan Shen Bo Kong Xiaoping Zou Kuirong Jiang Peilin Huang 《Journal of cellular and molecular medicine》2020,24(17):9881-9889
Pancreatic cancer patients are asymptomatic at early stages and leading to late diagnoses. Additionally, pancreatic cancer easily metastasizes and is resistant to radiotherapy and chemotherapy. Therefore, it is critical to understand the underlying molecular mechanisms involved in pancreatic cancer to develop more efficient diagnostic and treatment strategies. In this study, we demonstrated that circRHOT1 was overexpressed in pancreatic cancer tissues and cell lines, and it was found to directly bind to miR‐125a‐3p, acting as an endogenous sponge to inhibit its activity. Knockdown of circRHOT1 expression significantly inhibited proliferation as well as invasion, and it promoted apoptosis of pancreatic cancer cells via the regulation of E2F3 through the targeting of miR‐125a‐3p. Taken together, our results showed that circRHOT1 plays critical roles in regulating the biological functions of pancreatic cancer cells, suggesting that circRHOT1 may serve as a potential diagnostic marker and therapeutic target for patients with pancreatic cancer. 相似文献
17.
18.
19.
Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. In this study, we investigated the functional role of RCAN1 in the reactive oxygen species (ROS)‐mediated neuronal death signaling. We found that RCAN1 was able to protect the cells from H2O2‐induced cytotoxicity. The expression of RCAN1 caused an inhibition of the H2O2‐induced activation of mitogen‐activated protein kinases (MAPKs) and AP‐1. In contrast, RCAN1 significantly enhanced the activity of cAMP response element‐binding protein (CREB). Furthermore, RCAN1 induced the expression of the CREB target gene, Bcl‐2. Consistently, knockdown of endogenous RCAN1 using shRNA down regulated the phosphorylation of CREB and the expression of Bcl‐2, which protects the cells from H2O2‐induced cytotoxicity. Our data provide a new mechanism for the cytoprotective function of RCAN1 in response to oxidant‐induced apoptosis. J. Cell. Biochem. 114: 1115–1123, 2013. © 2012 Wiley Periodicals, Inc. 相似文献