首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brief and sublethal ischaemia renders an organ tolerant to subsequent prolonged ischaemia, which is called ischaemic preconditioning (IPC). In regard to the beneficial effects and endogenous mechanisms of renal delayed IPC, few data are available. In this study, we aim at determining reno-protective effects of delayed IPC against ischaemia-reperfusion (I/R) injury, and illustrating whether these effects are associated with suppressing inflammation and nuclear factor-kappaB (NF-kappaB) activation. I/R injury was induced by clamping both renal pedicles for 40 min, followed by 24 h of reperfusion. The rats were subjected to ischaemia for 20 min (preconditioning) or sham surgery (non- preconditioning) at day 4 before I/R. Functional and morphological parameters were evaluated at 24 h after reperfusion. At the same time, macrophage (ED-1(+)) infiltration, and the expression of intercellular adhesion molecule-1 (ICAM-1) and tumor necrosis factor-alpha (TNF-alpha) were assessed by immunohistochemistry. Moreover, I kappa B-alpha degradation and NF-kappaB/DNA binding activity were analyzed. Compared with rats exposed to I/R injury, preconditioned rats had a significant decrease in levels of serum creatinine (Scr, 384.3 +/- 21.8 micromol/L vs. 52.5 +/- 21.7 micromol/L; p<0.001), blood urea nitrogen (BUN, 40.4 +/- 2.7 mmol/L vs. 15.9 +/- 4.2 mmol/L; p<0.001) and serum aspartate aminotransferase (AST, 486.7 +/- 58.6 IU/L vs. 267.3 +/- 43.9 IU/L; p<0.001). Parallel to the above changes, preconditioned rats preserved structural integrity and decreased tubulointerstitial damage scores (3.4 +/- 0.3 vs. 0.2 +/- 0.05; p<0.001) and ED-1(+) cell infiltration (25.3 +/- 3.5 vs. 6.2 +/- 1.2 cells/HPF, p<0.01). Furthermore, our results showed that the expression of ICAM-1 and TNF-alpha, the degree of I kappa B-alpha degradation, and NF-kappaB/DNA binding activity were reduced by IPC. Taken together, our results demonstrated that delayed IPC offered both functional and histological protection, which may be related to suppression of inflammation in preconditioned kidneys.  相似文献   

2.
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1(-/-) mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2(-/-) mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1(-/-) mice. The rise in threshold for protection in Akt2(-/-) mice might be due to their diabetic phenotype.  相似文献   

3.
Ischaemic preconditioning (IPC) attenuates acute kidney injury (AKI) from renal ischaemia reperfusion. Renalase, an amine oxidase secreted by the proximal tubule, not only degrades circulating catecholamines but also protects against renal ischaemia reperfusion injury. Here, it has been suggested that the renoprotective effect of renal IPC is partly mediated by renalase. In a model of brief intermittent renal IPC, the increased cortex renalase expression was found to last for 48 hrs. IPC significantly reduced renal tubular inflammation, necrosis and oxidative stress following renal ischaemia reperfusion injury. Such effects were attenuated by blocking renalase with an anti‐renalase monoclonal antibody. We further demonstrated that renalase expression was up‐regulated by hypoxia in vitro via an hypoxia‐inducible factor (HIF)‐1α mechanism. The IPC‐induced up‐regulation of renalase in vivo was also reduced by pre‐treatment with an HIF‐1α inhibitor, 3‐(5′‐Hydroxymethyl‐2′‐furyl)‐1‐benzyl indazole. In summary, the renoprotective effect of IPC is partly dependent on the renalase expression, which may be triggered by hypoxia via an HIF‐1α mechanism. Endogenous renalase shows potential as a therapeutic agent for the prevention and treatment of AKI.  相似文献   

4.
Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R‐operated rats were divided into 4 groups: vehicle, apoptosis (Z‐vad), ferroptosis (Fer‐1) and necroptosis (Nec‐1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z‐vad (low and medium doses) or Fer‐1 (medium and high doses). Fer‐1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec‐1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.  相似文献   

5.
The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro‐survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K‐Akt, its negative regulator PTEN and other pro‐survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3β and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3β was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K‐dependent during the IPC phase. In conclusion, PI3K‐Akt plays a major role in IPC‐induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K‐independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.  相似文献   

6.
Poly (ADP-ribose) polymerase (PARP) has been proposed to play an important role in the pathogenesis of heart ischaemia/reperfusion (I/R) injury. However, the mechanisms of PARP-mediated heart I/R injury in vivo are still not thoroughly understood. Therefore, in this study, we investigate the effect of PARP inhibition on heart I/R injury and try to elucidate the underlying mechanisms. Studies were performed with I/R rats' hearts in vivo. Ischaemia followed by reperfusion caused a significant increase in Poly (ADP-ribose) (PAR), c-Jun NH2-terminal kinase (JNK) and apoptosis-inducing factor (AIF) activity. Administration of 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), an inhibitor of PARP, decreased myocardial infarction size from 61.11+/-7.46%[0] to 38.83+/-5.67% (P<0.05) and cells apoptosis from 35+/-5.3% to 20+/-4.1% (P<0.05) and simultaneously improved the cardiac function. Western blot analysis showed that administration of DPQ reduced the activation of JNK and attenuated mitochondrial-nuclear translocation of AIF. Additionally, administration of SP600125, an inhibitor of JNK, attenuated mitochondrial-nuclear translocation of AIF. The results of the present study demonstrated that the inhibition of PARP was able to reduce heart I/R injury in vivo. Our results also suggested that JNK may be downstream of PARP activation and be required for PARP-mediated AIF translocation. Inhibition of the activity of PARP may reduce heart I/R injury via suppressing AIF translocation mediated by JNK.  相似文献   

7.
The paradigm of postconditioning to protect the heart   总被引:3,自引:0,他引:3  
Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10-30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including Akappat and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5' -triphosphate (ATP)-sensitive K(+) and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3beta (GSK-3beta). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators which will in concert lead to protection against reperfusion injury. Pharmacological PostC and possibly remote PostC may have a promising future in clinical scenario.  相似文献   

8.
Cell death is an important biological process that is believed to have a central role in intestinal ischaemia/reperfusion (I/R) injury. While the apoptosis inhibition is pivotal in preventing intestinal I/R, how necrotic cell death is regulated remains unknown. Necroptosis represents a newly discovered form of programmed cell death that combines the features of both apoptosis and necrosis, and it has been implicated in the development of a range of inflammatory diseases. Here, we show that receptor‐interacting protein 1/3 (RIP1/3) kinase and mixed lineage kinase domain‐like protein recruitment mediates necroptosis in a rat model of ischaemic intestinal injury in vivo. Furthermore, necroptosis was specifically blocked by the RIP1 kinase inhibitor necrostatin‐1. In addition, the combined treatment of necrostatin‐1 and the pan‐caspase inhibitor Z‐VAD acted synergistically to protect against intestinal I/R injury, and these two pathways can be converted to one another when one is inhibited. In vitro, necrostatin‐1 pre‐treatment reduced the necroptotic death of oxygen‐glucose deprivation challenged intestinal epithelial cell‐6 cells, which in turn dampened the production of pro‐inflammatory cytokines (tumour necrosis factor‐α and interleukin‐1β), and suppressed high‐mobility group box‐1 (HMGB1) translocation from the nucleus to the cytoplasm and the subsequent release of HMGB1 into the supernatant, thus decreasing the activation of Toll‐like receptor 4 and the receptor for advanced glycation end products. Collectively, our study reveals a robust RIP1/RIP3‐dependent necroptosis pathway in intestinal I/R‐induced intestinal injury in vivo and in vitro and suggests that the HMGB1 signalling is highly involved in this process, making it a novel therapeutic target for acute ischaemic intestinal injury.  相似文献   

9.
Caspase-dependent apoptosis is considered one of the most important cell death pathways. When the apoptotic process is blocked, a form of programmed necrosis called necroptosis occurs. Apoptosis and necroptosis may share some regulatory mechanisms. Recent studies indicated that receptor interacting protein 1 (RIP1), an Hsp90-associated kinase, is an important regulatory switch between apoptosis and necroptosis. In this study, we showed that oxygen-glucose deprivation (OGD) combined with a caspase inhibitor zVAD (OGD/zVAD)-induced RIP1 protein expression in a time-dependent manner. We found that geldanamycin (GA), a benzoquinone ansamycin, protected against neuronal injury induced by OGD/zVAD treatment in cultured primary neurons. More importantly, GA decreased RIP1 protein level in a time- and concentration-dependent manner. In this study, we found that GA also decreased the Hsp90 protein level, which caused instability of RIP1 protein, resulting in decreased RIP1 protein level but not RIP1 mRNA level after GA treatment. We concluded that the GA-mediated protection against OGD/zVAD-induced neuronal injury was associated with enhanced RIP1 protein instability by decreasing Hsp90 protein level. GA and its derivatives may be promising for the prevention of neuronal injury during ischemic injury.  相似文献   

10.
A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.  相似文献   

11.
Angiotensin II (Ang II) has been found to exert preconditioning (PC)-like effect in mammalian hearts. The present investigation reported for the first time a unique mitogen activated protein (MAP) kinase signalling in Ang II PC of the heart involving lipid rafts, which generated a survival signal by differentially associating MAP kinases with caveolin. A group of rat hearts was treated with Ang II in the absence or presence of NADPH oxidase inhibitor, apocynin or a cell permeable reactive oxygen species (ROS) scavenger, N-acetyl-cysteine (NAC). Ang II pre-treatment improved post-ischaemic ventricular recovery, myocardial infraction and decreased the number of cardiomyocyte apoptosis indicating PC effect of Ang II. Both apocynin and NAC abolished the PC ability of Ang II. In Ang II treated heart, there was a decreased association of p38MAPKbeta & extracellular-signal regulated kinase (ERK) 1/ 2 (anti-death signalling component) with caveolin while there was an increased association of p38MAPKalpha & Jun N-terminal kinase (JNK) (death signalling component) indicating reduced amount of death signal components and increased amount of anti-death signalling components being available to the Ang II treated heart to generate a survival signal, which was reversed with NAC or apocynin. The survival signal was also demonstrated by increased phosphorylation of serine/threonine-protein kinase B (AKT) and enhanced induction of expression of Bcl-2 during Ang II PC and its reversal with NAC & apocynin treated heart.  相似文献   

12.
The present study was designed to see if acute local inhibition of Ras-GTPase before or after ischemia (during perfusion) would produce protection against ischemia and reperfusion (I/R)-induced cardiac dysfunction. The effect of glibenclamide, an inhibitor of cardiac mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels, on Ras-GTPase-mediated cardioprotection was also studied. A 40 min episode of global ischemia followed by a 30 min reperfusion in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (P(max)) and left ventricular end-diastolic pressure (LVEDP). Perfusion with Ras-GTPase inhibitor FPT III before I/R [FPT(pre)], significantly enhanced cardiac recovery in terms of left ventricular contractility. P(max) was significantly higher at the end of 30 min reperfusion in FPT(pre)-treated hearts compared to pre-conditioned hearts. However, the degree of improvement in left ventricular contractility was significantly less when FPT III was given only after ischemia during reperfusion [FPT(post)]. Combination treatment with FPT III and glibenclamide before I/R resulted in significant reduction of FPT III-mediated cardioprotection. These data suggest that activation of Ras-GTPase signaling pathways during ischemia are critical in the development of left ventricular dysfunction and that opening of mitoK(ATP) channels, at least in part, contributes to cardioprotection produced by Ras-GTPase inhibition.  相似文献   

13.
Many patients with ischaemic heart disease also have diabetes. As myocardial infarction is a major cause of mortality and morbidity in these patients, treatments that increase cell survival in response to ischaemia and reperfusion are needed. Exosomes—nano‐sized, lipid vesicles released from cells—can protect the hearts of non‐diabetic rats. We previously showed that exosomal HSP70 activates a cardioprotective signalling pathway in cardiomyocytes culminating in ERK1/2 and HSP27 phosphorylation. Here, we investigated whether the exosomal cardioprotective pathway remains intact in the setting of type II diabetes. Exosomes were isolated by differential centrifugation from non‐diabetic and type II diabetic patients, from non‐diabetic and Goto Kakizaki type II diabetic rats, and from normoglycaemic and hyperglycaemic endothelial cells. Exosome size and number were not significantly altered by diabetes. CD81 and HSP70 exosome markers were increased in diabetic rat exosomes. However, exosomes from diabetic rats no longer activated the ERK1/2 and HSP27 cardioprotective pathway and were no longer protective in a primary rat cardiomyocytes model of hypoxia and reoxygenation injury. Hyperglycaemic culture conditions were sufficient to impair protection by endothelial exosomes. Importantly, however, exosomes from non‐diabetic rats retained the ability to protect cardiomyocytes from diabetic rats. Exosomes from diabetic plasma have lost the ability to protect cardiomyocytes, but protection can be restored with exosomes from non‐diabetic plasma. These results support the concept that exosomes may be used to protect cardiomyocytes against ischaemia and reperfusion injury, even in the setting of type II diabetes.  相似文献   

14.
Plasma membrane (PM) vesicles isolated from the yeast Saccharomyces cerevisiae (wild-type NCIM 3078, and a MG 21290 mutant pma 1-1) were used to monitor the effect of the detergents, 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (Chaps) and Triton X-100, on H+-ATPase (E.C. 3.6.1.35), NADH oxidase and NADH- hexacynoferrate (III)[HCF (III)] oxidoreductase (E.C. 1.6.99.3) activities. The results obtained show that Triton X-100 inhibited both membrane bound and solubilized NADH-dependent redox activities. The nature of this inhibition as determined for NADH–HCF(III) oxidoreductase was non-competitive and the Ki values for wild and mutant enzymes were 1.2?×?10?5?M and 8.0?×?10?6?M, respectively. The findings are interpreted, in view of the established reports, that the active site architecture of PM bound NADH-dependent oxidoreductase in yeast is likely to be different than in other eukaryotes.  相似文献   

15.
NO has been implicated in the mechanism of ischaemic preconditioning. To verify this hypothesis further we have attempted to reproduce effects of ischaemic preconditioning by nitric oxide donors administration prior to the ischaemia. The effect of glyceryl trinitrate (GTN) and 3-morpholino-sydnonimine-hydrochloride (SIN- 1), NO donors, on reperfusion induced ventricular tachycardia (VT) and ventricular fibrillation (VF) in Langendorff perfused rat hearts subjected to 10 min regional ischaemia followed by 10 min reperfusion were examined. Results: GTN, 500 M and SIN-1, 10 M, administered for 5 min and washed for another 5 min prior to ischaemia (to mimic ischaemic preconditioning), almost completely abolished reperfusion induced VF. GTN and SIN-1, administered at the time of reperfusion, increased the incidence of sustained VF and the duration of VT and VF. When given 5 min before the ischaemia and throughout the ischaemia and the reperfusion, SIN-1 abolished VF. Adenosine, 10 M, applied according to the above three protocols, did not affect reperfusion arrhythmias, although adenosine induced changes in coronary flow and post-ischaemic reflow were similar to those produced by the NO donors. In conclusions: (1) NO is able to mimic the effect of ischaemic preconditioning on reperfusion arrhythmias in rat heart, supporting the view that NO may be one of the endogenous substances triggering ischaemic preconditioning; (2) In crystalloid-perfused heart, NO may be deleterious when its administration is restricted to the reperfusion period.  相似文献   

16.
17.
目的:分别观察给予HO-1诱导剂和抑制剂对心肌相对缺血再灌注损伤和缺血预适应的影响,探讨HO-1在缺血预适应中的作用.方法:实验动物随机分为对照组(CN)、缺血/再灌损伤组(I/R)、缺血预适应 缺血/再灌损伤组(PC)、HO-1诱导剂 缺血/再灌损伤组(HM)、HO-1抑制剂 缺血预适应组(ZP).心肌缺血/再灌损伤采用相对缺血/再灌损伤模型,缺血预适应则为相对缺血5min恢复5min,反复2次.测定心功能、MDA及HO-1活性变化.结果:HM组HO-1活性升高,心功能恢复率均显著高于IR组(P<0.01),MDA含量显著低于IR组(P<0.05).ZP组活性降低,心功能恢复率显著低于PC组(P<0.05),MDA含量显著高于PC组(P<0 05).结论:HO-1是缺血预适应释放的内源性活性物质之一.  相似文献   

18.
19.
In order to characterise the possible mechanisms involved in Al toxicity some functional characteristics were analysed in young barley (Hordeum vulgare L.) seedlings cultivated between moistened filter paper. Transfer of germinated barley seeds into hydroponic culture system caused significant stress, which was manifested by root-growth inhibition and elevated Evans blue uptake of root tips. Hydroponics caused stress unabled the analysis of Al-induced stress in the young barley roots during the first day of cultivation. Several (3–4) days are required for adaptation of barley seedlings to hydroponics in spite of strong aeration of the medium. Using filter paper compared to cultivation in solution application of much higher Al concentrations were required to inhibit root growth. Al-induced root growth inhibition, Al uptake, damage of plasma-membrane (PM) permeability of root cells, as well as elevated oxalate oxidase - OxO (EC 1.2.3.4) activity were significantly correlated. While 1 mM Al concentration had no effect on barley roots growing on filter paper, 5 to 100 mM Al concentration inhibited root growth, enhanced cell death and induced oxalate oxidase activity with increasing intensity. The time course analysis of OxO gene expression and OxO activity showed that 10 mM Al increased OxO activity as soon as 3 h after exposure of roots to Al reaching its maximum at about 18 h after Al application. These results indicate that expression of OxO is activated very early after exposure of barley to Al, suggesting its role in oxidative stress and subsequent cell death caused by Al toxicity in plants.  相似文献   

20.
Iron and copper play major roles in biological systems, catalyzing free radical production and consequently causing damage. The relatively high levels of these metals, which are mobilized into the coronary flow following prolonged ischemia, have been incriminated as key players in reperfusion injury to the heart. In the present communication we investigated other roles of iron – providing protection to the ischemic heart via preconditioning (PC).PC was accomplished by subjecting isolated rat hearts to three episodes of 2 min ischemia separated by 3 min of reperfusion. Prolonged ischemia followed the PC phase. PC hearts (group I) were compared to hearts subjected to normal perfusion (group II, no ischemia) and to ischemia without PC (group III). Group I showed a marked improvement in the recovery of hemodynamic function vs. group III. Biochemical parameters further substantiated the PC protection provided to group I against prolonged ischemia. Correspondingly, group I presented markedly lower re-distribution and mobilization of iron and copper into the coronary flow, following prolonged ischemia, as evinced from the decrease in total levels, and in the 'free' fraction of iron and copper.During the PC phase no loss of cardiac function was observed. A small wave of re-distribution and mobilization of iron (typically less than 4–8% of the value of 35 min ischemia) was recorded. The cellular content of ferritin (Ft) measured in the heart was significantly higher in group I than in group III (0.90 and 0.54 g/mg, respectively). Also, iron-saturation of Ft was significantly lower for PC hearts, compared to both groups II and III (0.22 vs. 0.32 and 0.31 g/mg, for 35 min ischemia, respectively). These findings are in accord with the proposal that intracellular re-distribution and mobilization of small levels of iron, during PC, cause rapid accumulation of ferritin – the major iron-storage protein.It is proposed that iron play a dual role: (i) It serves as a signaling pathway for the accumulation of Ft following the PC phase. This iron is not involved in cardiac injury, but rather prepares the heart against future high levels of 'free' iron, thus reducing the degree of myocardial damage after prolonged ischemia. (ii) High levels of iron (and copper) are mobilized following prolonged ischemia and cause tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号