首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current evidence supports the use of bone marrow–derived mesenchymal stem cells (MSCs) for a diverse range of clinical applications, and many studies have shown that MSCs have renal-protective effects, but the mechanism is not well understood. Therefore, in this study, we aim to further identify whether MSCs can attenuate renal fibrosis by decreasing tubulointerstitial injury in a unilateral ureteral obstruction (UUO) model. In this study, we cultured MSCs and then transplanted them into a UUO model through the tail vein. Histology, cell proliferation, peritubular capillary (PTC) loss and myofibroblast markers were examined on days 3, 7 and 14 after surgery. We demonstrated that renal interstitial fibrosis in the MSC group was significantly attenuated compared with the UUO and DMEM groups. Moreover, MSC treatment inhibited the loss of PTCs and increased parenchymal cell proliferation. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by MSC infusion. Furthermore, MSCs attenuated tubulointerstitial infiltration of macrophages in UUO mice. Tubulointerstitial damage plays a very important role in the progression of chronic kidney disease (CKD). PTC loss, macrophage recruitment, and myofibroblast activation are directly correlated with the development of renal tubulointerstitial fibrosis. Our results suggest that MSC infusion in the UUO model is a promising therapeutic strategy for promoting kidney repair.  相似文献   

2.
Small extracellular vesicles (EVs) are 50–200 nm vesicles secreted by most cells. They are considered as mediators of intercellular communication, and EVs from specific cell types, in particular mesenchymal stem/stromal cells (MSCs), offer powerful therapeutic potential, and can provide a novel therapeutic strategy. They appear promising and safe (as EVs are non‐self‐replicating), and eventually MSC‐derived EVs (MSC‐EVs) may be developed to standardized, off‐the‐shelf allogeneic regenerative and immunomodulatory therapeutics. Promising pre‐clinical data have been achieved using MSCs from different sources as EV‐producing cells. Similarly, a variety EV isolation and characterization methods have been applied. Interestingly, MSC‐EVs obtained from different sources and prepared with different methods show in vitro and in vivo therapeutic effects, indicating that isolated EVs share a common potential. Here, well‐characterized and controlled, publicly available proteome profiles of MSC‐EVs are compared to identify a common MSC‐EV protein signature that might be coupled to the MSC‐EVs’ common therapeutic potential. This protein signature may be helpful in developing MSC‐EV quality control platforms required to confirm the identity and test for the purity of potential therapeutic MSC‐EVs.  相似文献   

3.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

4.
5.

Background

Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

Methods

To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs.

Results

We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation.

Conclusion

MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.  相似文献   

6.
The present study examined the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) and adipose‐derived mesenchymal stem cells (AD‐MSCs) in methotrexate (MTX)‐induced pulmonary fibrosis in rats as compared with dexamethasone (Dex). MTX (14 mg/kg, as a single dose/week for 2 weeks, p.o.) induced lung fibrosis as marked by elevation of relative lung weight, malondialdehyde, nitrite/nitrate, interleukin‐4, transforming growth factor‐β1, deposited collagen, as well as increased expression of Bax along with the reduction of reduced glutathione content and superoxide dismutase activity. These deleterious effects were antagonized after treatment either with BM‐MSCs or AD‐MSCs (2 × 106 cells/rat) 2 weeks after MTX to even a better extent than Dex (0.5 mg/kg/ for 7 days, p.o.). In conclusion, BM‐MSC and AD‐MSCs possessed antioxidant, antiapoptotic, as well as antifibrotic effects, which will probably introduce them as remarkable candidates for the treatment of pulmonary fibrosis.  相似文献   

7.
《Genomics》2022,114(3):110319
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.  相似文献   

8.
Chronic liver injury leads to the accumulation of myofibroblasts resulting in increased collagen deposition and hepatic fibrogenesis. Treatments specifically targeting fibrogenesis are not yet available. Mesenchymal stromal cells (MSCs) are fibroblast‐like stromal (stem) cells, which stimulate tissue regeneration and modulate immune responses. In the present study we assessed whether liver fibrosis and cirrhosis can be reversed by treatment with MSCs or fibroblasts concomitant to partial hepatectomy (pHx)‐induced liver regeneration. After carbon tetrachloride‐induced fibrosis and cirrhosis, mice underwent a pHx and received either systemically or locally MSCs in one of the two remaining fibrotic/cirrhotic liver lobes. Eight days after treatment, liver fibrogenesis was evaluated by Sirius‐red staining for collagen deposition. A significant reduction of collagen content in the locally treated lobes of the regenerated fibrotic and cirrhotic livers was observed in mice that received high dose MSCs. In the non‐MSC‐treated counterpart liver lobes no changes in collagen deposition were observed. Local fibroblast administration or intravenous administration of MSCs did not ameliorate fibrosis. To conclude, local administration of MSCs after pHx, in contrast to fibroblasts, results in a dose‐dependent on‐site reduction of collagen deposition in mouse models for liver fibrosis and cirrhosis.  相似文献   

9.
Allogeneic haematopoietic stem cell transplantation (allo‐HSCT) is the only curative method in treating haematologic malignant diseases. Graft‐versus‐host disease (GVHD) is a common complication post–allo‐HSCT, which can be life‐threatening. Mesenchymal stem cells (MSCs) as an adult stem cell with immunoregulatory function have demonstrated efficacy in steroid resistant acute GVHD (aGVHD). However, the outcome of aGVHD treated with MSCs in clinical trials varied and its underlying mechanism is still unclear. TGF‐β1 is a potent cytokine, which plays a key role in immunoregulation. In the present study, we firstly transduced the lentivirus vector containing TGF‐β1 gene with mouse bone marrow‐derived MSCs. Then, we investigated the immunosuppressive effect of TGF‐β1 gene‐modified MSCs on lymphocytes in vitro and its preventive and therapeutical effects on murine aGVHD model in vivo. Murine MSC was successfully isolated and identified. TGF‐β1 was efficiently transduced into mouse MSCs, and high level TGF‐β1 was detected. MSC‐TGF‐β1 shared the same morphology and immunotypic features of normal MSC. In vitro, MSC‐TGF‐β1 showed enhanced immunosuppressive function on lymphocyte proliferation. In vivo, MSC‐TGF‐β1 showed enhanced amelioration on the severity of aGVHD both in prophylactic and therapeutic murine models. Finally, the macrophages (MØs) derived from MSC‐TGF‐β1–treated mice showed a remarkably increasing of anti‐inflammatory M2‐like phenotype. Furthermore, the differentiation of CD4+ CD25+ Foxp3+ Treg cells was significantly increased in MSC‐TGF‐β1–treated group. Taken together, we proved that MSC‐TGF‐β1 showed enhanced alleviation of aGVHD severity in mice by skewing macrophages into a M2 like phenotype or increasing the proportion of Treg cells, which opens a new frontier in the treatment of aGVHD.  相似文献   

10.
Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue‐derived MSCs 2 weeks earlier, or sham. STK senescence‐associated β‐galactosidase (SA‐β‐Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence‐associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue‐derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA‐β‐Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA‐β‐Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.  相似文献   

11.
Chronic aristolochic acid (AA) nephropathy (CAAN) caused by intake of AA-containing herbs is difficult to treat. We evaluated the therapeutic effect of bone marrow (BM) mesenchymal stem cells (MSCs) on a rat model of CAAN. Female Wistar rats were fed with decoction of Caulis Aristolochia manshuriensis by intragastric administration. MSCs were prepared from BM of male Wistar rats and injected into female CAAN rats through tail vein. Body weight, renal function, and urinary excretion of these CAAN rats were monitored before killing at the end of the 20th week. Blood, urine, and tissue samples were collected from experimental (MSC and non-MSC) and normal control groups. All animals developed renal fibrosis after 12 weeks of intake of AA-containing decoction. Fibrosis in the MSC groups was significantly reduced as examined with light and electron microscopy. Blood urea nitrogen, serum creatinine, and urine protein levels were significantly reduced and hemoglobin levels were improved in the MSC group as compared with the non-MSC group (p < 0.01). The expression of TGF-β1 mRNA and protein was reduced but hepatic growth factor (HGF) was increased in the MSC group compared with the non-MSC group, but still higher than the normal control level as measured by immunochemical, RT-PCR, and western blotting assays (p < 0.01). The renal fibrosis of CAAN could be protected by isogenic MSC transplantation, probably via upregulation of HGF and downregulation of TGF-β1.  相似文献   

12.
Unilateral ureteral obstruction (UUO) is a representative model for investigating the common mechanism of decreasing renal function in chronic renal failure. In this study, we present a new partial UUO model in adult rats and evaluated the effect of beraprost sodium (BPS: stable prostaglandin I2 (PGI2) analog). We could make reproductive and uniform partial UUO by ligating the left ureter together with a 0.5 mm diameter stainless steel wire with nylon thread, and withdrawing the stainless wire. One week later, the ureteral obstruction was released. After 3 weeks from the release of UUO, all animals of control group, without BPS administration, developed basophilic degeneration of tubular epithelium, tubular dilatation and interstitial fibrosis. The areas of tubular degeneration and fibrosis were significantly reduced in the BPS group, orally administered BPS 300 μg/kg twice a day from the next day of the release of obstruction, than in control group.In conclusion, we can established the adult rat partial UUO-release model and revealed that BPS can inhibit renal tubular damage and tubulointerstitial fibrosis.  相似文献   

13.
Peripheral nerve injury results in limited nerve regeneration and severe functional impairment. Mesenchymal stem cells (MSCs) are a remarkable tool for peripheral nerve regeneration. The involvement of human umbilical cord MSC‐derived extracellular vesicles (hUCMSC‐EVs) in peripheral nerve regeneration, however, remains unknown. In this study, we evaluated functional recovery and nerve regeneration in rats that received hUCMSC‐EV treatment after nerve transection. We observed that hUCMSC‐EV treatment promoted the recovery of motor function and the regeneration of axons; increased the sciatic functional index; resulted in the generation of numerous axons and of several Schwann cells that surrounded individual axons; and attenuated the atrophy of the gastrocnemius muscle. hUCMSC‐EVs aggregated to rat nerve defects, down‐regulated interleukin (IL)‐6 and IL‐1β, up‐regulated IL‐10 and modulated inflammation in the injured nerve. These effects likely contributed to the promotion of nerve regeneration. Our findings indicate that hUCMSC‐EVs can improve functional recovery and nerve regeneration by providing a favourable microenvironment for nerve regeneration. Thus, hUCMSC‐EVs have considerable potential for application in the treatment of peripheral nerve injury.  相似文献   

14.
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.  相似文献   

15.
16.
No cure yet exists for devastating Alzheimer's disease (AD), despite many years and humongous efforts to find efficacious pharmacological treatments. So far, neither designing drugs to disaggregate amyloid plaques nor tackling solely inflammation turned out to be decisive. Mesenchymal stem cells (MSCs) and, in particular, extracellular vesicles (EVs) originating from them could be proposed as an alternative, strategic approach to attack the pathology. Indeed, MSC‐EVs—owing to their ability to deliver lipids/proteins/enzymes/microRNAs endowed with anti‐inflammatory, amyloid‐β degrading, and neurotrophic activities—may be exploited as therapeutic tools to restore synaptic function, prevent neuronal death, and slow down memory impairment in AD. Herein the results presented in the most recently published studies on this topic are critically evaluated, providing a strong rationale for possible employment of MSC‐EVs in AD. Also see the video abstract here https://youtu.be/tBtDbnlRUhg .  相似文献   

17.
The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell‐secreted ECMs have become of interest as they reproduce tissue‐architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast‐derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast‐differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non‐ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast‐differentiating MSCs with Activin‐A. Extracellular proteins were upregulated in Activin‐A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC‐secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.  相似文献   

18.
Transplantation of adult marrow stromal cells (MSCs) has been developed as a new method of treating severe ischemia diseases by therapeutic angiogenesis. Erythropoietin (EPO) is capable of inducing angiogenesis and inhibiting MSCs apoptosis. The effect of EPO on the therapeutic potency of MSCs transplantation in a rat model of limb ischemia was investigated in the current study. The results indicate that the combined treatment with MSC transplantation and EPO infusion is superior to MSC transplantation alone in the treatment of limb ischemia. MSCs transplantation and EPO infusion could enhance the angiogenic effect of each other to achieve a better therapeutic effect. This combination therapy may become a more effective approach for ischemia diseases of the limbs.  相似文献   

19.
《Cytotherapy》2014,16(4):471-484
Background aimsMinimal change nephrotic syndrome is the most frequent cause of nephrotic syndrome in childhood. Current treatment regimes, which include glucocorticoid hormones and immunosuppressive therapy, are effective and have fast response. However, because of the side effects, long treatment course, poor patient compliance and relapse, novel approaches for the disease are highly desired.MethodsThe adriamycin-induced nephrotic rat model was established. Rats were allocated to a model group, a prednisone group or mesenchymal stromal cell (MSC) group. Clinical parameters in each treatment group were determined at 2 weeks, 4 weeks and 8 weeks. The messenger RNA (mRNA) levels of synaptopodin, p21 and monocyte chemoattractant protein-1 were determined through the use of quantitative real-time–polymerase chain reaction. Protein levels were determined by means of Western blot or enzyme-linked immunosorbent assay. Podocytes were isolated and apoptotic rate after adriamycin with or without MSC treatment was analyzed by means of flow cytometry.ResultsMSC intervention improved renal function as assessed by urinary protein, blood creatinine and triglyceride levels. MSC intervention reduced adriamycin-induced renal tissue damage visualized by immunohistochemistry and light and electron microscopic analysis and reduced adriamycin-induced podocyte apoptosis. After MSC intervention, mRNA and protein levels of synaptopodin and p21 in renal cortex were significantly increased. MSCs also restored synaptopodin mRNA and protein expression in isolated podocytes. In addition, monocyte chemoattractant protein-1 mRNA in renal cortex and protein level in serum of the MSC treatment group were significantly decreased compared with that in the adriamycin-induced nephropathy model group.ConclusionsOur data indicate that MSCs could protect rats from adriamycin-induced minimal change nephrotic syndrome, and the protective effects of MSCs are mediated through multiple actions.  相似文献   

20.
Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号