首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epithelial–mesenchymal transition (EMT) has been implicated in fibrogenesis and carcinogenesis; however, the exact role of EMT-inducer Slug in the progression of precancerous oral submucous fibrosis (OSF) has not been investigated. In the current study, we showed that the expression of Slug was upregulated in OSF tissues and associated with various myofibroblast markers. After silence of Slug in fibrotic buccal mucosal fibroblasts (fBMFs), the elevated myofibroblast activities and fibrosis markers were all downregulated. Our data revealed that arecoline, an areca nut alkaloid, increased the expression of Slug in normal BMFs, and inhibition of Slug successfully prevented the arecoline-induced myofibroblast activation. Additionally, overexpression of Slug in BMFs stimulated the activities of myofibroblasts, indicating that upregulation of Slug by arecoline contributes to the myofibroblast transdifferentiation. Most importantly, Slug was able to bind to the E-box of type I collagen, leading to increased expression of type I collagen. Altogether, this study demonstrated the abnormal elevation of Slug in OSF and its significance in arecoline-induced fibrogenesis. Moreover, downregulation of Slug could be a potential target for OSF remedy via suppression of myofibroblast activities and type I collagen.  相似文献   

3.
4.
Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as an important etiological factor for disease manifestation. Activation of transforming growth factor-β signaling has been postulated as the main causative event for increased collagen production in OSF. Oral epithelium plays important roles in OSF, and arecoline has been shown to induce TGF-β in epithelial cells. In an attempt to understand the role of areca nut constituents in the manifestation of OSF, we studied the global gene expression profile in epithelial cells (HaCaT) following treatment with areca nut water extract or TGF-β. Interestingly, 64% of the differentially regulated genes by areca nut water extract matches with the TGF-β induced gene expression profile. Out of these, expression of 57% of genes was compromised in the presence of ALK5 (TβRI) inhibitor and 7% were independently induced by areca nut, highlighting the importance of TGF-β in areca nut actions. Areca nut water extract treatment induced p-SMAD2 and TGF-β downstream targets in HaCaT cells but not in human gingival fibroblast cells (hGF), suggesting epithelial cells could be the source of TGF-β in promoting OSF. Water extract of areca nut consists of polyphenols and alkaloids. Both polyphenol and alkaloid fractions of areca nut were able to induce TGF-β signaling and its downstream targets. Also, SMAD-2 was phosphorylated following treatment of HaCaT cells by Catechin, Tannin and alkaloids namely Arecoline, Arecaidine and Guvacine. Moreover, both polyphenols and alkaloids induced TGF-β2 and THBS1 (activator of latent TGF-β) in HaCaT cells suggesting areca nut mediated activation of p-SMAD2 involves up-regulation and activation of TGF-β. These data suggest a major causative role for TGF-β that is induced by areca nut in OSF progression.  相似文献   

5.
Prevention of infarct scar thinning and dilatation and stimulation of scar contracture can prevent progressive heart failure. Since microRNA 145 (miR‐145) plays an important role in cardiac fibroblast response to wound healing and cardiac repair after an myocardial infarction (MI), using a miR‐145 knock‐out (KO) mouse model, we evaluated contribution of down‐regulation of miR‐145 to cardiac fibroblast and myofibroblast function during adverse cardiac remodelling. Cardiac function decreased more and the infarct size was larger in miR‐145 KO than that in WT mice after MI and this phenomenon was accompanied by a decrease in cardiac fibroblast‐to‐myofibroblast differentiation. Quantification of collagen I and α‐SMA protein levels as well as wound contraction revealed that transdifferentiation of cardiac fibroblasts into myofibroblasts was lower in KO than WT mice. In vitro restoration of miR‐145 induced more differentiation of fibroblasts to myofibroblasts and this effect involved the target genes Klf4 and myocardin. MiR‐145 contributes to infarct scar contraction in the heart and the absence of miR‐145 contributes to dysfunction of cardiac fibroblast, resulting in greater infarct thinning and dilatation. Augmentation of miR‐145 could be an attractive target to prevent adverse cardiac remodelling after MI by enhancing the phenotypic switch of cardiac fibroblasts to myofibroblasts.  相似文献   

6.
7.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

8.
Gingival connective tissue often has a composition resembling that of scar surrounding dental implant abutments. Increased cell adhesion, α‐smooth muscle actin (α‐SMA) expression and increased extracellular matrix deposition are a hallmark of fibrotic cells, but how topographic features influence gingival fibroblast adhesion and adoption of the α‐SMA positive myofibroblast phenotype associated with scarring is unknown. The purpose of the present study was to demonstrate whether implant topographies that limit adhesion formation would reduce myofibroblast differentiation and extracellular matrix deposition. Human gingival fibroblasts were cultured on PT (smooth) and SLA (roughened) titanium discs for varying time‐points. At 1 and 2 weeks after seeding, incorporation of α‐SMA into stress‐fibre bundles and fibronectin deposition was significantly higher on PT than SLA surfaces indicating differentiation of the cells towards a myofibroblast phenotype. Analysis of adhesion formation demonstrated that cells formed larger adhesions and more stable adhesions on PT, with more nascent adhesions observed on SLA. Gene expression analysis identified up‐regulation of 15 genes at 24 hrs on SLA versus PT associated with matrix remodelling. Pharmacological inhibition of Src/FAK signalling in gingival fibroblasts on PT reduced fibronectin deposition and CCN2 expression. We conclude that topographical features that reduce focal adhesion stability could be applied to inhibit myofibroblast differentiation in gingival fibroblasts.  相似文献   

9.
MiR‐214 has been reported to act as a tumor suppressor or oncogene involved in various malignancies. However, the biological functions and molecular mechanisms of miR‐214 in hepatocellular carcinoma (HCC) still remain unclear. Previous studies suggest that pyruvate dehydrogenase kinase 2 (PDK2) and plant homeodomain finger protein 6 (PHF6) may be involved in some tumor cell proliferation and migration. Therefore, we studied the relationship between PDK2/PHF6 and miR‐214. The expression of miR‐214, PDK2, and PHF6 was determined by quantitative real‐time polymerase chain reaction in HCC tissues and cell lines. The Luciferase reporter assay was used to confirm the interaction between miR‐214 and PDK2/PHF6. Cell proliferation, apoptosis, and migration were evaluated by cell counting kit‐8 assay, flow cytometry, and transwell assay, respectively. The expressions levels of α‐smooth muscle actin (α‐SMA) and E‐cadherin were detected via immunofluorescence assay. Here, we found that the expression of miR‐214 decreased in HCC and was negatively correlated with PDK2 and PHF6. Moreover, PDK2 and PHF6 were the direct targets of miR‐214 in HCC cells. Functional analysis showed that knockdown of PDK2 or PHF6 as well as miR‐214 overexpression significantly suppressed cell proliferation and migration in HCC cells. Furthermore, we found that the suppression of cell proliferation and migration through PDK2 or PHF6 knockdown could be partially reversed by miR‐214 down‐regulation. Moreover, we demonstrated a decrease of mesenchymal cell marker α‐SMA and increase of the epithelial marker E‐cadherin after miR‐214 overexpression, PDK2 knockdown or PHF6 knockdown, respectively, which also suggested that cell proliferation and migration were suppressed. Additionally, lactate and pyruvic acid production experiments confirmed miR‐214 could suppress the HCC cell lactate and pyruvic acid levels by down‐regulating PDK2/PHF6. In conclusion, MiR‐214 may act as a tumor suppressor gene, presenting its suppressive role in cell proliferation and migration of HCC cells by targeting PDK2 and PHF6, and might provide a potential therapy target for patients with HCC.  相似文献   

10.
We previously revealed that epithelial‐to‐mesenchymal transition (EMT) was mediated by ΔNp63β, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63β‐mediated EMT, miRNA microarray analyses were performed by ΔNp63β‐overexpression in OSCC cells; SQUU‐B, which lacks ΔNp63 expression and displays EMT phenotypes. miRNAs microarray analyses revealed miR‐205 was the most up‐regulated following ΔNp63β‐overexpression. In OSCC cells, miR‐205 expression was positively associated with ΔNp63 and negatively with zinc‐finger E‐box binding homeobox (ZEB) 1 and ZEB2, potential targets of miR‐205. miR‐205 overexpression by miR‐205 mimic transfection into SQUU‐B cells led to decreasing ZEB1, ZEB2, and mesenchymal markers, increasing epithelial markers, and reducing cell motilities, suggesting inhibition of EMT phenotype. Interestingly, the results opposite to this phenomenon were obtained by transfection of miR‐205 inhibitor into OSCC cells, which express ΔNp63 and miR‐205. Furthermore, target protector analyses revealed direct regulation by miR‐205 of ZEB1 and ZEB2 expression. These results showed tumor‐suppressive roles of ΔNp63β and miR‐205 by inhibiting EMT thorough modulating ZEB1 and ZEB2 expression in OSCC.  相似文献   

11.
12.
We explored the role of microRNA‐30a (miR‐30a) and the mechanism involved in hepatic fibrosis. MiR‐30a overexpression was achieved by miR‐30a mimics transfection in hepatic stellate cells (HSCs) (HSC‐T6, LX‐2), and miR‐30a agomir (ago‐miR‐30a) treatment in mice. MiR‐30a levels were measured using TaqMan miRNA assay system, and the localization of miR‐30a was detected by fluorescence in situ hybridization (FISH). The interaction of miR‐30a and Beclin1 was confirmed by dual‐luciferase reporter assay. Autophagic flux was analysed using tandem mRFP‐GFP‐LC3 fluorescence microscopy, electron microscopy and Western blot of LC3‐II/I ratio. MiR‐30a was notably down‐regulated in activated HSCs and LX‐2‐exosomes induced by TGF‐β1; overexpression of miR‐30a down‐regulated extracellular matrix (ECM), such as α‐SMA, TIMP‐1, and Collagen I expression, and suppressed cell viability in HSCs. MiR‐30a was significantly down‐regulated in hepatic fibrosis mice and overexpression of miR‐30a prevented BDL‐induced fibrogenesis, concomitant with the down‐regulation of ECM. MiR‐30a inhibited HSCs autophagy and increased lipid accumulation in HSCs and in mice fibrotic hepatic tissues. MiR‐30a inhibited its downstream effector of Beclin1 by direct targeting its 3′‐UTR region. Moreover, Knock‐down of Beclin1 by small interfering RNA (siRNA) inhibited HSC autophagy and activation in LX‐2 cells. In conclusion, miR‐30a is down‐regulated in hepatic fibrosis models and its overexpression prevents liver fibrogenesis by directly suppressing Beclin1‐mediated autophagy; therefore, miR‐30a may be a new potential therapeutic target for controlling hepatic fibrosis.  相似文献   

13.
Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro‐proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro‐proliferative effects of ANW on fibroblasts are dependent on insulin‐like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki‐67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.  相似文献   

14.
15.
16.
17.
18.
19.
Plasminogen activator inhibitor‐1 (PAI‐1) promotes pulmonary fibrosis through increasing myofibroblast (MF) characteristics, expressing alpha‐smooth muscle actin (α‐SMA) in fibroblasts. Fibroblasts in the tumour stroma are called cancer‐associated fibroblasts (CAFs). Some CAFs have MF characteristics and substantially promote tumour progression and chemotherapy resistance. This study determined whether inhibition of PAI‐1 suppressed MF characteristics of CAFs and limited chemotherapy resistance in lung cancer. To investigate cellular PAI‐1 expression and its correlation with α‐SMA expression of CAFs, 34 patients’ paraffin‐embedded lung adenocarcinoma tissue sections were immunohistochemically stained for PAI‐1 and α‐SMA. Immunohistochemical analysis of lung adenocarcinoma tissues showed that PAI‐1 expression was correlated with that of α‐SMA (r = 0.71, p < 0.001). Furthermore, in vitro, α‐SMA expression of CAFs was limited by PAI‐1 inhibition, and apoptosis of CAFs was increased. In addition, the effectiveness of cisplatin on lung cancer cells co‐cultured with CAFs was increased by suppressing α‐SMA expression using PAI‐1 inhibitor. In lung adenocarcinoma tissues, PAI‐1 expression was associated with T factor and TNM stage. Our data suggest that inhibition of PAI‐1 increased the chemotherapeutic effect on lung cancer through suppressing the MF characteristics of CAFs. Hence, PAI‐1 might be a promising therapeutic target for patients with chemotherapeutic‐resistant lung cancer with CAFs.  相似文献   

20.
To validate whether down‐regulation of microRNA‐203 (miR‐203) in hepatocellular carcinoma (HCC) is involved in HCC progression by targeting survivin. MiR‐203 mimics was transfected into HepG2 cells to enhance miR‐203 expression, and miR‐203 inhibitor was transfected into HepG2 cells to inhibit miR‐203 expression. The effect of up‐regulation and down‐regulation of miR‐203 on survivin expression of HepG2 cells was evaluated using Western blot assay. The effect of miR‐203 or survivin expression on the proliferation of HepG2 cells was detected using the CKK‐8 assay. Over‐expression of miR‐203 significantly inhibited the expression of survivin in HepG2 cells (p < 0·05), and down‐expression of miR‐203 significantly promoted the expression of survivin in HepG2 cells (p < 0·05). Both over‐expression of miR‐203 and down‐regulation of survivin suppressed proliferation of HepG2 cells significantly compared with negative control. Low expression of miR‐203 contributes to the progression of HCC via targeting survivin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号