首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
    
  相似文献   

5.
    
  相似文献   

6.
    
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.  相似文献   

7.
8.
9.
    
In recent years, the incidence of diabetes has been increasing rapidly, which seriously endangers human health. Diabetic cardiomyopathy, an important cardiovascular complication of diabetes, is characterized by myocardial fibrosis, ventricular remodelling and cardiac dysfunction. It has been documented that mitochondrial dysfunction, oxidative stress, inflammatory response, autophagy, apoptosis, diabetic microangiopathy and myocardial fibrosis are implicated in the pathogenesis of diabetic cardiomyopathy. With the development of molecular biology technology, accumulating evidence demonstrates that non‐coding RNAs (ncRNAs) are critically involved in the molecular mechanisms of diabetic cardiomyopathy. In this review, we summarize the pathological roles of three types of ncRNAs (microRNA, long ncRNA and circular RNA) in the progression of diabetic cardiomyopathy, which may provide valuable insights into the pathogenesis of diabetic cardiovascular complications.  相似文献   

10.
11.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

12.
13.
    
C. Luo  L. Sun  J. Ma  J. Wang  H. Qu  D. Shu 《Animal genetics》2015,46(3):265-271
MicroRNAs are an abundant class of small non‐coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR‐1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR‐1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga‐miR‐1596‐3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast‐growing commercial lines and the slow‐growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast‐growing and a slow‐growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 was significantly associated with RFI. These findings suggest that miR‐1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga‐miR‐1596‐3p microRNA in chicken.  相似文献   

14.
15.
16.
17.
18.
We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon‐derived paralogous RNAs, RNA‐2571–4, show extended complementarity to the 3′ UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA‐2571 and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is faster degraded in vitro upon duplex formation with RNA‐2571. Insertion of the 1183 3′ UTR downstream of the lacS gene results in strongly reduced lacS mRNA levels in transformed cells, indicating that antisense regulation can function in trans.  相似文献   

19.
    
In this study, we investigated the role of a long non‐coding RNA GAPLINC in angiogenesis using human umbilical vein endothelial cells (HUVEC). We found that hypoxia and hypoxia‐inducible factor 1α (HIF‐1α) increased the expression of GAPLINC in HUVEC cells. Moreover, GAPLINC overexpression down‐regulated miR‐211 and up‐regulated Bcl2 protein expression. Further rescue experiments confirmed that hypoxia directly increased GAPLINC expression. GAPLINC overexpression also increased cell migration and vessel formation which promoted angiogenesis, and these changes were attributed to the increased expression of vascular endothelial growth factor receptors (VEGFR) and delta‐like canonical notch ligand 4 (DLL4) receptors. Finally, we demonstrated that GAPLINC promotes vessel formation and migration by regulating MAPK and NF‐kB signalling pathways. Taken together, these findings comprehensively demonstrate that overexpression of GAPLINC increases HUVEC cells angiogenesis under hypoxia condition suggesting that GAPLINC can be a potential target for critical limb ischaemia (CLI) treatment.  相似文献   

20.
    
The “RNA World” hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA‐protein complex plays diverse roles in processing RNA, but its best‐understood reaction is pre‐tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment. J. Cell. Biochem. 108: 1244–1251, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号