首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
CCM3, also named as PDCD10, is a ubiquitous protein expressed in nearly all tissues and in various types of cells. It is essential for vascular development and post‐natal vessel maturation. Loss‐of‐function mutation of CCM3 predisposes for the familial form of cerebral cavernous malformation (CCM). We have previously shown that knock‐down of CCM3 stimulated endothelial angiogenesis via impairing DLL4‐Notch signalling; moreover, loss of endothelial CCM3 stimulated tumour angiogenesis and promoted tumour growth. The present study was designed to further elucidate the inside signalling pathway involved in CCM3‐ablation‐mediated angiogenesis. Here we report for the first time that silencing endothelial CCM3 led to a significant up‐regulation of EphB4 mRNA and protein expression and to an increased kinase activity of EphB4, concomitantly accompanied by an activation of Erk1/2, which was reversed by treatment with the specific EphB4 kinase inhibitor NVP‐BHG712 (NVP), indicating that silencing CCM3 activates EphB4 kinase forward signalling. Furthermore, treatment with NVP rescued the hyper‐angiogenic phenotype induced by knock‐down of endothelial CCM3 in vitro and in vivo. Additional study demonstrated that the activation of EphB4 forward signalling in endothelial cells under basal condition and after CCM3‐silence was modulated by DLL4/Notch signalling, relying EphB4 at downstream of DLL4/Notch signalling. We conclude that angiogenesis induced by CCM3‐silence is mediated by the activation of EphB4 forward signalling. The identified endothelial signalling pathway of CCM3‐DLL4/Notch‐EphB4‐Erk1/2 may provide an insight into mechanism of CCM3‐ablation‐mediated angiogenesis and could potentially contribute to novel therapeutic concepts for disrupting aberrant angiogenesis in CCM and in hyper‐vascularized tumours.  相似文献   

5.
Bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic factors, which may be a potential candidate for bone tissue engineering. However, the osteogenic capacity of BMP9 still need to be further enhanced. In this study, we determined the effect of Wnt10b on BMP9-induced osteogenic differentiation in mesenchymal stem cell (MSCs) and the possible mechanism underlying this process. We introduced the polymerase chain reaction (PCR), Western blot analysis, histochemical stain, ectopic bone formation, and microcomputed tomography analysis to evaluate the effect of Wnt10b on BMP9-induced osteogenic differentiation. Meanwhile, PCR, Western blot analysis, chromatin immunoprecipitation, and immunoprecipitation were used to analyze the possible relationship between BMP9 and Wnt10b. We found that BMP9 upregulates Wnt10b in C3H10T1/2 cells. Wnt10b increases the osteogenic markers and bone formation induced by BMP9 in C3H10T1/2 cells, and silencing Wnt10b decreases these effects of BMP9. Meanwhile, Wnt10b enhances the level of phosphorylated Smad1/5/8 (p-Smad1/5/8) induced by BMP9, which can be reduced by silencing Wnt10b. On the contrary, Wnt10b inhibits adipogenic markers induced by BMP9, which can be decreased by silencing Wnt10b. Further analysis indicated that BMP9 upregulates cyclooxygenase-2 (COX-2) and phosphorylation of cAMP-responsive element binding (p-CREB) simultaneously. COX-2 potentiates the effect of BMP9 on increasing p-CREB and Wnt10b, while silencing COX-2 decreases these effects. p-CREB interacts with p-Smad1/5/8 to bind the promoter of Wnt10b in C3H10T1/2 cells. Our findings suggested that Wnt10b can promote BMP9-induced osteogenic differentiation in MSCs, which may be mediated through enhancing BMP/Smad signal and reducing adipogenic differentiation; BMP9 may upregulate Wnt10b via the COX-2/p-CREB-dependent manner.  相似文献   

6.
7.
Obesity often leads to obesity‐related cardiac hypertrophy (ORCH), which is suppressed by zinc‐induced inactivation of p38 mitogen‐activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4‐week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B‐cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate‐treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate‐induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate‐induced up‐regulation of BCL10 and phospho‐p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress‐mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress‐activated BCL10 expression and p38 MAPK activation.  相似文献   

8.
Emerging evidence shows that interleukin (IL)‐10 gene polymorphisms can regulate its expression level and thus influence person's susceptibility to preeclampsia. However, various published results were inconsistent. To explore the association between maternal IL‐10 gene polymorphisms and preeclampsia, we performed a meta‐analysis based upon 11 individual studies here. Our meta‐analysis results indicated that IL‐10 ‐819C/T (C versus T, OR = 1.28, 95% CI = 1.08–1.50, P = 0.003) and ‐592C/A (C versus A, OR = 1.28, 95% CI = 1.03–1.59, P = 0.03) polymorphisms were associated with preeclampsia. Although there was no overall association between ‐1082A/G polymorphism and preeclampsia (G versus A, OR = 0.93, 95% CI = 0.77–1.13, P = 0.49), such association existed among Asian (G versus A, OR = 1.29, 95% CI = 1.04–1.60, P = 0.02) and South American (G versus A, OR = 0.72, 95% CI = 0.54–0.94, P = 0.02) populations in the subgroup analysis stratified by continents.  相似文献   

9.
Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR‐92b‐5p was up‐regulated in BMSCs after administration of melatonin, and transfection of miR‐92b‐5p accelerated osteogenesis of BMSCs. In contrast, silence of miR‐92b‐5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR‐92b‐5p AMO as well. Luciferase reporter assay, real‐time qPCR analysis and western blot analysis confirmed that miR‐92b‐5p was involved in osteogenesis by directly targeting intracellular adhesion molecule‐1 (ICAM‐1). Melatonin improved the expression of miR‐92b‐5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM‐1. This study provided novel methods for treating osteoporosis.  相似文献   

10.
11.
12.
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.  相似文献   

13.
14.
ObjectivesScavenger receptor class A, member 3 (Scara3) was involved in adipogenesis. However, the effect of Scara3 on the switch between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) remains elusive.Materials and MethodsThe correlations between SCARA3 with the osteogenic‐related were analysed based on the GTEx database. The effects of Scara3 on osteogenic or adipogenic differentiation of BMSCs were evaluated by qPCR, Western blot (WB) and cell staining. The mechanisms of Scara3 regulating Foxo1 and autophagy were validated by co‐expression analysis, WB and immunofluorescence. In vivo, Scara3 adeno‐associated virus was injected into intra‐bone marrow of the aged mice and ovariectomized (OVX) mice whose phenotypes were confirmed by micro‐CT, calcein double labelling and immunochemistry (HE and OCN staining).Results SCARA3 was positively correlated with osteogenic‐related genes. Scara3 expression gradually decreased during adipogenesis but increased during osteogenesis. Moreover, the deletion of Scara3 favoured adipogenesis over osteogenesis, whereas overexpression of Scara3 significantly enhanced the osteogenesis at the expense of adipogenesis. Mechanistically, Scara3 controlled the cell fate by promoting Foxo1 expression and autophagy flux. In vivo, Scara3 promoted bone formation and reduced bone marrow fat accumulation in OVX mice. In the aged mice, Scara3 overexpression alleviated bone loss as well.ConclusionsThis study suggested that Scara3 regulated the switch between adipocyte and osteoblast differentiation, which represented a potential therapeutic target for bone loss and osteoporosis.  相似文献   

15.
16.
Aging is a major risk factor for tendon injury and impaired tendon healing, but the basis for these relationships remains poorly understood. Here we show that rat tendon‐derived stem/progenitor cells (TSPCs) differ in both self‐renewal and differentiation capability with age. The frequency of TSPCs in tendon tissues of aged animals is markedly reduced based on colony formation assays. Proliferation rate is decreased, cell cycle progression is delayed and cell fate patterns are also altered in aged TSPCs. In particular, expression of tendon lineage marker genes is reduced while adipocytic differentiation increased. Cited2, a multi‐stimuli responsive transactivator involved in cell growth and senescence, is also downregulated in aged TSPCs while CD44, a matrix assembling and organizing protein implicated in tendon healing, is upregulated, suggesting that these genes participate in the control of TSPC function.  相似文献   

17.
18.
The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale‐up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin‐10 (IL‐10) in tobacco BY‐2 cell suspension and evaluated the effect of an elastin‐like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL‐10 accumulation. We report the highest accumulation levels of hIL‐10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL‐10‐ELP has cytokine activity, its activity is reduced compared to unfused IL‐10, likely caused by interference of ELP with folding of IL‐10. Green fluorescent protein has no effect on IL‐10 accumulation, but examining the trafficking of IL‐10‐GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full‐size fusion remains in the whole‐cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL‐10‐GFP‐ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.  相似文献   

19.
Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR‐1914 in HCC. Here, we first confirmed that miR‐1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR‐1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR‐1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR‐1914 in HCC cells. In addition, down‐regulation of AKT phosphorylation inhibited the effects of miR‐1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR‐1914 in HCC; thus, lncRNA DUXAP10 regulated miR‐1914 expression and modulated the GPR39/PI3K/AKT‐mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10–regulated miR‐1914 plays a functional role in inhibiting HCC progression by targeting GPR39‐mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.  相似文献   

20.
MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self‐renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR‐10b in regulating the self‐renewal of mouse SSCs. We showed that miR‐10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR‐10b significantly increased the apoptosis of SSCs compared with controls. Kruppel‐like factor 4 was found to be a target gene of miR‐10b in the enhancement of SSC proliferation. These findings further our understanding of the self‐renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号