首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—The activities of GABA enzymes in rat cerebral cortex were studied after the administration of the convulsant, 3-mercaptopropionic acid (MP). We found that MP markedly inhibited glutamate decarboxylase (EC 4.1.1.15) and activated GABA-aminotransferase (EC 2.6.1.c). The level of GABA appeared to be decreased during convulsions but thereafter returned to normal. The study of the subcellular distribution of GABA enzymes after the administration of MP indicated that the glutamate decarboxylase present in the nerve endings was not affected, while GABA aminotransferase in the mitochondria was activated to a similar extent to that observed in the original homogenate. These results together with the recovery of glutamate decarboxylase activity in cortical homogenates by dialysis suggested a reversible type of inhibition, whereas the effect on GABA-aminotransferase seemed to be more permanent.  相似文献   

2.
Nitrogen remobilization during senescence has been studied in perennial herb Paris polyphylla. We analyzed changes in N content, amino acids, N-remobilization enzymes and effects of gibberellic acid (GA) during natural senescence. There was a gradual decrease in the contents of N, chlorophyll and soluble proteins and activities of glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GLDH; EC 1.4.1.2). Activity staining and Western blots showed that GS2 activity decreased, whereas GS1 activity was relatively stable over time. In contrast, the C/N ratio and total amino acid content increased. Among individual amino acids, the proportions of glutamine (Gln) and asparagine (Asn) increased, and proportions of arginine, aspartate and glycine decreased. Treatment with GA slowed the senescence and retarded decreases in the activities of GS and GLDH and the contents of N, chlorophyll and soluble proteins. Conversely, this treatment slowed increases in the C/N ratio, total free amino acid content, and proportions of Gln and Asn. We conclude that low N resorption efficiency during senescence of P. polyphylla results from a sharp decrease in N remobilization enzyme activity.  相似文献   

3.
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a) was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity.  相似文献   

4.
5.
1. The incorporation of glucose carbon in vivo into amino acids was studied in the chick optic lobes and cerebellum during postnatal growth after subcutaneous injection of [U-14C]glucose. 2. The rapid incorporation of glucose carbon into free amino acids appears between the 1st and the 2nd day of postnatal growth in the optic lobes and between the 1st and the 4th day after hatching in the cerebellum. 3. The period during which the properties of mature brain metabolism are obtained is characterized in both structures during the first 48 hr of postnatal growth by changes in the specific radioactivity of some amino acids such as aspartate and alpha-alanine, and also by transient increases of glucose and glutamine concentrations. 4. The gamma-aminobutyrate content in the optic lobes is very high; the cerebellum on the contrary is characterized by its low gamma-aminobutyrate concentration linked to a very fast metabolism of this amino acid.  相似文献   

6.
Sophorolipids (SLs) are extra cellular glycolipids produced by Candida bombicola ATCC 22214 when grown in the presence of glucose and fatty acids. These compounds have a disaccharide head group connected to a long-chain hydroxyl-fatty acid by a glycosidic bond. To explore structure-activity of modified SLs, a new family of amino acid-SL derivatives was prepared. Synthesized analogs consist of amino acids linked by amide bonds formed between their alpha-amino moiety and the carboxyl group of ring-opened SL fatty acids. Their preparation involved the following: (i) hydrolysis of a natural SL mixture with aqueous alkali to give SL free acids, (ii) coupling of free acids to protected amino acids using dicarbodiimide, and (iii) removing amino acid carboxyl protecting groups. These conjugates were evaluated for their antibacterial, anti-HIV, and spermicidal activity. All tested analogs showed antibacterial activity against both gram +ve and gram -ve organisms. Leucine-conjugated SL was most efficient. For example, the minimum inhibitory concentrations (MIC) for Moraxella sp. and E. coli were 0.83 and 1.67 mg/mL, respectively. Among the alkyl esters of amino acid conjugated SLs, the ethyl ester of leucine-SLs was most active. Against Moraxella sp., S. sanguinis, and M. imperiale, MIC values are 7.62 x 10(-4), 2.28 x 10-(3) and 1.67 mg/mL, respectively. All compounds displayed virus-inactivating activity with 50% effective concentrations (EC50) below 200 microg/mL. The EC50 of leucine-SL ethyl ester was 24.1 microg/mL, showing that it is more potent than commercial spermicide nonoxynol-9 (EC50 approximately 65 microg/mL).  相似文献   

7.
Abstract— —Selectivity in the esterification of fatty acids to lysolecithin by rat-brain enzymes in vitro was investigated using free fatty acids (activation plus esterification) and CoA esters (esterification) of two naturally-occurring monoenoic fatty-acid isomers, oleic acid [18:1 (n - 9)] and cis-vaccenic acid [18:1 (n - 7)]. Esterification of free acids to l-acyl-sn-glycero-3-phosphorylcholine (1-acyl GPC) was dependent on CoA and ATP, and was stimulated by MgCl2 and NaF. Under comparable conditions, fatty-acid activation (acyl-CoA synthetase [acid: CoA ligase (AMP)] EC 6.2.1.3.) appeared to be rate-limiting to 1-acyl GPC acyltransferase (acyl-CoA:l-acylglycero-3-phosphocholine O-acyltrans-ferase, EC 2.3.1.23.), since rates were always less with free fatty acids than with the CoA esters. A comparison of substrate curves obtained with free fatty acids and CoA esters suggests a preference for oleic acid during activation. Acyltransferase activity with 2-acyl GPC was similar with both acyl-CoA isomers, whereas with 1-acyl GPC, activity with oleoyl-CoA consistently exceeded that with cis-vaccenoyl-CoA. This difference between patterns of selectivity in esterification of positions 1 and 2 of lecithin suggests that separate enzymes catalyze the two reactions. The transfer of the isomers to the 2 position was affected in a similar manner by changes in pH and temperature, as well as in protein, fatty acid (or acyl-CoA), and 1-acyl GPC concentrations. Patterns of incorporation with simultaneous incubation of both isomers suggests one enzyme. Differences in acyltransferase activity with the two isomerie acyl-CoA's were observed in subcellular distribution, activity changes with brain maturation, and loss of activity on preincubation of microsomes at 45C. From these results it is not certain whether oleic and cis-vaccenic acids are esterified to the 2 position by separate enzymes, or by one enzyme with different affinities for the isomers. However, the investigation clearly indicates that acyltransferases, and possibly acyl-CoA synthetases in brain possess selectivity related to subtle differences in double-bond position. These selectivities probably are important in determining the specific fatty-acid composition of the complex lipids of brain.  相似文献   

8.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

9.
Field-grown winter wheat (Triticum aestivum L. cv. Castell) was used to study changes in the free amino acid pools of different plant parts and related enzyme activities in the flag leaf throughout the grain-filling period in three consecutive growing seasons. Amino acid analysis data indicated that, during senescence, the nitrogen flow in the flag leaf was directed towards the synthesis of glutamine as a specific nitrogen transport form. Of the enzymes involved, total glutamine synthetase (GS; EC 6.3.1.2) and especially ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) activities declined continuously as senescence progressed. Unlike (chloroplastic) GS2, (cytosolic) GS1 was shown to be very persistent suggesting a special role for this isoenzyme in the N-reallocation process. Glutamate-oxaloacetate transaminase (GOT; EC 2.6.1.1), glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) and isocitrate dehydrogenase (IDH; EC 1.1.1.42) showed a characteristic biphasic activity profile after anthesis. It is proposed that these enzymes, for each of which at least two isoenzymes were demonstrated, are involved in glutamate synthesis at the later stages of leaf senescence. Ammonium levels were fairly constant throughout the flag leafs life span, an ultimate rise often following peak values of glutamate dehydrogenase (GDH; EC 1.4.1.4) activity. The enzymology of flag leaf amino acid metabolism during grain development is further discussed in relation to observations of NH3-volatilization from naturally senescing wheat plants.  相似文献   

10.
The study of free amino acid content in Yarrowia lipolytica cells grown on ethanol under thiamine deficiency showed that glutamate, alanine, and γ-aminobutyric acid (γ-ABA) occurred in the highest concentrations among the present 17 free amino acids. The culture liquid contained no amino acids. Analysis of the enzymes of oxidative metabolism in the yeast grown under these conditions showed that the cell-free homogenate contained substantial activity of glutamate decarboxylase, γ-ABA transaminase, and succinyl semialdehyde dehydrogenase. This result indicated the formation of succinate from glutamate in a reaction catalyzed by 4-aminobutyrate aminotransferase (γ-aminobutyrate bypass) under severe thiamine deficiency. These studies lead to the conclusion that cultivation of the yeast Y. lipolytica on ethanol under thiamine deficiency causes adaptive stress-induced metabolic changes. Increase of ammonium nitrogen consumption and excretion of α-ketoglutaric acid are indicative of physiological changes, the functioning of the γ-aminobutyrate bypass and high activity of malate dehydrogenase are manifestations of metabolic changes, and increased activities of the transamination reactions reflect the changes in nitrogen metabolism.  相似文献   

11.
There exist differences between 12-day-old and adult rats in the onset of seizures induced by some inhibitors of glutamate decarboxylase (GAD). The aim of study was to investigate if there are differences between both groups in activities of rat brain alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the enzymes involved in glutamate metabolism, after the administration of 3-mercaptopropionic acid as specific GAD inhibitor or isoniazid as less specific general inhibitor of pyridoxal enzymes. Activities of both aminotransferases in a supernatant 20,000 g of the whole brain (containing predominantly cytosolic isoforms of enzymes) were increased at the beginning of 3-mercaptopropionic acid-induced generalized tonic-clonic seizures. At isoniazid-induced generalized tonic-clonic seizures, a significant increase in both enzyme activities was observed in adult rat brain. In the 12-day-old rat brain, ALT and AST activities reached about 40% and about 50–60% of adult control levels, respectively. In in vitro experiments, no influence of 3-mercaptopropionic acid on transaminase activities was found and an inhibitory effect of isoniazid on the enzymes was confirmed. Increased aminotransferase activities might participate in the enhanced synthesis of excitatory amino acid neurotransmitters in the nervous system, which may take a part in the initiation of epileptic seizures. Alternatively, the increased AST activity may be connected with an increased transport of NADH from the cytosol to mitochondria, while the increased ALT activity would represent the transformation of pyruvate to alanine as a consequence of increased glycolysis.  相似文献   

12.
Changes in the concentrations of free amino acids and specific organic acids were analysed during the induction of drought stress in Brassica napus . Most of the amino acids showed a characteristic linear increase with the induction of drought stress in Brassica leaves, increasing an average of 5.9-fold over control levels, followed by a reduction in concentration upon rehydration of the plants. Pyruvate concentrations doubled after 4 days of drought stress whereas 2-oxoglutarate concentrations remained relatively constant. The activities of two of the enzymes involved in amino acid biosynthesis, alanine aminotransferase (EC 2.6.1.2) and aspartate aminotransferase (EC 2.6.1.1), were also measured. Neither enzyme showed any increase in activity, except when the plants were rehydrated. This suggests that the increase in both alanine and aspartate levels results from the increase in their precursors pyruvate and glutamate and may not require increased enzyme activity. The effect of drought stress upon changes in protein synthesis was analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We found that there was an overall decrease in protein synthesis with the induction of drought stress, followed by a resumption of synthesis upon rehydration. In addition, the synthesis of a number of specific polypeptides was found to decrease upon water loss in the leaves.  相似文献   

13.
The metabolism of glutamine in the leaf and subtended fruit of the aging pea (Pisum sativum L. cv. Burpeeana) has been studied in relation to changes in the protein, chlorophyll, and free amino acid content of each organ during ontogenesis. Glutamine synthetase [EC 6.3.1.2] activity was measured during development and senescence in each organ. Glutamate synthetase [EC 2.6.1.53] activity was followed in the pod and cotyledon during development and maturation. Maximal glutamine synthetase activity and free amino acid accumulation occurred together in the young leaf. Glutamine synthetase (in vitro) in leaf extracts greatly exceeded the requirement (in vivo) for reduced N in the organ. Glutamine synthetase activity, although declining in the senescing leaf, was sufficient (in vitro) to produce glutamine from all of the N released during protein hydrolysis (in vivo). Maximal glutamine synthetase activity in the pod was recorded 6 days after the peak accumulation of the free amino acids in this organ.

In the young pod, free amino acids accumulated as glutamate synthetase activity increased. Maximal pod glutamate synthetase activity occurred simultaneously with maximal leaf glutamine synthetase activity, but 6 days prior to the corresponding maximum of glutamine synthetase in the pod. Cotyledonary glutamate synthetase activity increased during the assimilatory phase of embryo growth which coincided with the loss of protein and free amino acids from the leaf and pod; maximal activity was recorded simultaneously with maximal pod glutamine synthetase.

We suggest that the activity of glutamine synthetase in the supply organs (leaf, pod) furnishes the translocated amide necessary for the N nutrition of the cotyledon. The subsequent activity of glutamate synthetase could provide a mechanism for the transfer of imported amide N to alpha amino N subsequently used in protein synthesis. In vitro measurements of enzyme activity indicate there was sufficient catalytic potential in vivo to accomplish these proposed roles.

  相似文献   

14.
In tomato, free amino acids increase dramatically during fruit ripening and their abundance changed differentially. More evident is l-glutamate which gives the characteristic “umami” flavor. Glutamate is the principal free amino acid of ripe fruits of cultivated varieties. In this paper, we examined the capacity of tomato fruits to process endogenous as well as exogenous polypeptides during the ripening transition, in order to analyze their contribution to the free amino acid pool. In addition, the activity of some enzymes involved in glutamate metabolism such as γ-glutamyl transpeptidase (γ-GTase), glutamate dehydrogenase (GDH), α-ketoglutarate-dependent γ-aminobutyrate transaminase (GABA-T), alanine and aspartate aminotransferases was evaluated. Results showed that peptidases were very active in ripening fruits, and they were able to release free amino acids from endogenous proteins and glutamate from exogenously added glutamate-containing peptides. In addition, red fruit contained enough γ-GTase activity to sustain glutamate liberation from endogenous substrates such as glutathione. From all the glutamate metabolizing enzymes, GDH and GABA-T showed the higher increase in activities when the ripening process starts. In summary, tomato fruits increase free amino acid content during ripening, most probably due to the raise of different peptidase activities. However, glutamate level of ripe fruit seems to be mostly related to GDH and GABA-T activities that could contribute to increase l-glutamate level during the ripening transition.  相似文献   

15.
Net balances of amino acids were constructed for stages of development of a leaf of white lupin (Lupinus albus L.) using data on the N economy of the leaf, its exchanges of amino acids through xylem and phloem, and net changes in its soluble and protein-bound amino acids. Asparagine, aspartate, and γ-aminobutyrate were delivered to the leaf in excess of amounts consumed in growth and/or phloem export. Glutamine was supplied in excess until full leaf expansion (20 days) but was later synthesized in large amounts in association with mobilization of N from the leaf. Net requirements for glutamate, threonine, serine, proline, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were met mainly or entirely by synthesis within the leaf. Amides furnished the bulk of the N for amino acid synthesis, asparagine providing from 24 to 68%. In vitro activity of asparaginase (EC 3.5.1.1) exceeded that of asparagine:pyruvate aminotransferase (EC 2.6.1.14) during early leaf expansion, when in vivo estimates of asparagine metabolism were highest. Thereafter, aminotransferase activity greatly exceeded that of asparaginase. Rates of activity of one or both asparagine-utilizing enzymes exceeded estimated rates of asparagine catabolism throughout leaf development. In vitro activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1) were consistently much higher than that of glutamate dehydrogenase (EC 1.4.1.3), and activities of the former two enzymes more than accounted for estimated rates of ammonia release in photorespiration and deamidation of asparagine.  相似文献   

16.
The distribution of amino acids and key enzymes involved innitrogen metabolism was determined in mesophyll cells (MC),mesophyll protoplasts (MP), and paraveinal mesophyll protoplasts(PVMP) isolated from fully expanded trifoliolate leaves of non-nodulatedsoybean. Qualitative and quantitative differences were foundin the distribution of amino acids, with MP containing the highestconcentrations. Activity of nitrate reductase, glycolate oxidase,glutamine synthetase and glutamate dehydrogenase was measuredin both tissue types and differences in activities between thetissue types were seen. PVMP had high glutamate dehydrogenaseactivity when compared to MP. Activities of glycolate oxidaseand glutamine synthetase were much higher in MP on a protoplastbasis while nitrate reductase activity was similar between thetwo protoplast types. These results, on the distribution ofmetabolites and associated enzymes, are discussed as to theirpossible significance to nitrogen metabolism in the soybeanleaf. Key words: Amino acids, glutamate dehydrogenase, Glycine max, nitrate reductase, nitrogen metabolism, paraveinal mesophyll, protoplasts  相似文献   

17.
Several parameters of amino acid metabolism were studied in detached primary leaves of wheat (Triticum aestivum L. cv. Castell) during a 14 day incubation period in the dark. Protein loss was accompanied by a 5-fold increase in the total amount of free amino acids during the first 4 days of the incubation period with asparagine being the most important. Beyond this stage a pronounced intracellular accumulation of ammonium occured. A gradual decrease in the levels of free amino acids and ammonium at the later stages of senescence could in part be accounted for by leakage from the leaves. Additionally, some nitrogen was lost due to ammonia volatilization. The rapid decay of the glutamine synthetase (GS; EC 6.3.1.2)-glutamate synthase (Fd-GOGAT; EC 1.4.7.1) system and the fast decline of glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) activity appear to be predominant features of senescence in the dark. Decreasing Fd-GOGAT activity was slightly compensated by a small and temporary increase in the activity of NADH-GOGAT (EC 1.4.1.14). Glutamateoxalocetate transaminase (GOT: EC 2.6.1.1) activity, although declining continuously, proved to be much more persistent. Changes in glutamate dehydrogenase (GDH; EC 1.4.1.3) activity closely resembled the profile of ammonium evolution in the leaves and NADP-isocitrate dehydrogenase (IDH; EC 1.1.1.42) activity revealed a temporary maximum during the period of rapid increase in GDH activity. Increased activity of GDH could also be induced by exogenous ammonium. Ammonium accumulation could, at least partly, be caused by increased asparaginase (EC 3.5.1.1) activity which accompanied the rapid conversion of asparagine to aspartic acid. Asparagine aminotransferase (EC 2.6.1.14) activity declined sharply from the beginning of the senescence period. Although the activity profile of glutaminase (EC 3.5.1.2) was similar to that of asparaginase, glutamine was of little importance quantitatively and an analogous relationship between glutamine and glutamic acid could not be detected.  相似文献   

18.
An analog of lysophosphatidylcholine (1-dodecyl-propanediol-3-phosphocholine) which does not impair membrane-bound enzymes was used for the induction of shedding of membrane vesicles from intact calf thymocytes. Without liberation of intracellular enzymes such as lactate dehydrogenase (EC 1.1.1.27) the shedded membranes contained 15--25% of the total activity of the plasma membrane enzymes alkaline phosphatase (EC 3.1.3.1), nucleotide pyrophosphatase (EC 3.1.4.1) and gamma-glutamyl transferase (EC 2.3.2.2). Membrane-free supernatants only exhibited trace activities of these enzymes. Without further purification, the specific enzyme activities in shedded membranes were of the same order of magnitude as in purified plasma membranes prepared after nitrogen cavitation of thymocytes. Small amounts of membrane vesicles which showed a different composition could be removed without detergent. These membranes exhibited a 3-fold lower specific activity of the gamma-glutamyl transferase while that of the alkaline phosphatase and nucleotide pyrophosphatase was similar as in detergent induced membrane vesicles. Distinct differences also were found in the protein pattern. The content of total cholesterol and phospholipid in vesicles shed spontaneously or after detergent treatment was nearly identical, however, significant differences were found in the fatty acid composition of the main phospholipids. The content of polyunsaturated fatty acids (linoleic and arachidonic acid) increased in the order: spontaneously shedded membranes, detergent induced vesicles, conventional purified plasma membranes. These results are discussed in terms of the heterogeneous composition of areas of the thymocyte plasma membrane.  相似文献   

19.
In a previous study, we developed 5-methyltryptophan (5MT)-resistant rice ( Oryza sativa L.) mutant lines via in vitro mutagenesis. These mutant lines exhibited elevated free amino acid content, in addition to a marked tolerance to a 5MT inhibition. In this study, we verified these increased protein and amino acid contents in the advanced mutant lines, and discovered that the anthranilate synthase (AS, EC 4.1.3.27) activity of the mutant plants was 2.2–3 times as high as that of the control. In all four tested 5MT-resistant mutant lines, AS activity proved to be less sensitive to tryptophan inhibition than that of the control. Proteins produced, either in elevated amounts or de novo in response to 5MT were studied by comparison of silver-stained two-dimensional gels of leaf proteins, between the control and two 5MT-resistant mutant lines. At least 20 proteins exhibited either elevated expression or de novo generation following exposure to growth-inhibitory concentrations of 5MT in MRI-40. We assessed the 5MT stress-mediated responses of the four antioxidant enzymes; catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), superoxide dismutase (SOD, EC 1.15.1.1) and aspartate peroxidase (APX, EC 1.11.1.11). We found that the activity levels of all four enzymes were increased as a result of 5MT treatment, in both the control and the 5MT-resistant mutant lines. However, the mutant lines exhibited more pronounced increases in the antioxidant enzymes than did the control. Significant differences in these activity increases were observed between the control and the mutant lines in the SOD and APX activity assays. Native PAGE confirmed these differences in SOD and APX activity, with the separation patterns of the isoforms of SOD and APX. These results mean that the 5MT-resistant mutants might possess active antioxidant systems which protect the cell from 5MT stress that may induce the production of reactive oxygen species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号