首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between Plasmodium berghei sporozoites and Kupffer cells in rat liver were studied by transmission electron microscopy. Between 10 and 45 min after inoculation, sporozoites were found in the process of entering Kupffer cells and inside phagolysosomes. The sporozoites entered the Kupffer cells by phagocytosis as determined by the presence of pseudopods and local accumulations of aggregated microfilaments and the resulting exclusion of other organelles in the phagocyte cytoplasm beneath the attached parasite. Sporozoites were taken up either with their anterior end first, or backwards. Scanning electron microscopy of in vitro sporozoite Kupffer cell interaction confirmed these observations. It was concluded that sporozoites are taken up in a normal phagocytic way by the Kupffer cells, regardless of their initial place of contact or position. Thirty min after inoculation sporozoites found in phagolysosomes were still morphologically intact but after 45 min we could encounter completely digested sporozoites.  相似文献   

2.
SYNOPSIS. Monolayer primary and secondary cultures of embryonic bovine kidney, spleen, intestinal and testicle cells, and secondary cultures of embryonic bovine thymus, maintained in lactalbumin hydrolysate, Earle's balanced salt solution and ovine serum were observed for a maximum of 21 days after inoculation of E. bovis sporozoites. The sporozoites entered the cells in all of these cultures but underwent development only in primary cultures of kidney and intestinal cells and in secondary cultures of kidney, spleen, thymus, intestinal, and testicle cells. In acellular media, the sporozoites retained motility no longer than 21 hr. In the cell cultures, free motile sporozoites were seen for as long as 18 days after inoculation. Sporozoites entered cells anterior end first; the process of penetration required a few seconds to about a minute. Sporozoites were also observed leaving host cells. Intracellular sporozoites were first seen 3 min after inoculation; they were observed at various intervals up to 18 days after inoculation. In transformation of sporozoites into trophozoites a marked change in size and appearance of the nucleus took place before the change in shape of the body occurred. Trophozoites were first found 7 days after inoculation, multinucleate schizonts after 8 days, and schizonts with merozoites after 14 days. Schizonts containing merozoites were seen only in kidney, spleen, and thymus cells. The mature schizonts were smaller and represented a much lower proportion of the total number than in comparable stages of infections in calves. Schizonts with many nuclei occurred in intestinal cells; the most advanced stage seen in testicle cells was the binucleate schizont. Nuclear and cytoplasmic changes were observed in the infected cells.  相似文献   

3.
The interactions of sporozoites of Eimeria tenella with peritoneal cells from normal and from immunized chickens were examined in vitro. Although the uptake of sporozoites by cells from immunized birds was greater than by cells from susceptible birds, no differences were apparent in their appearance in electron micrographs. Entry into both macrophages and heterophils (comparable to mammalian neutrophils) was by phagocytosis. The findings are discussed.  相似文献   

4.
Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.  相似文献   

5.
Plasmodium berghei sporozoites successfully entered and developed into exoerythrocytic schizonts in a variety of cell types cultured in vitro, but segmentation and release of merozoites was only observed in human embryonic lung cells. Exoerythrocytic development was generally not influenced by the culture medium, and NCTC-135 was used routinely. In vitro infectivity of P. berghei sporozoites was unaffected by the serum type used for isolation.  相似文献   

6.
SYNOPSIS. Sporozoites of Eimeria tenella were injected into the peritoneal cavity of normal chickens and chickens immunized against E. tenella. In some experiments normal scrum and serum from resistant chickens were injected prior to the injection of sporozoites. After 15 or 30 minute periods of intraperitoneal incubation, exudates were harvested and the occurrence of intracellular sporozoites was determined. Only macrophages and degranulated granulocytes were observed to contain sporozoites. There was no significant difference between the number of macrophages obtained from normal chickens (normal macrophages) which contained sporozoites and the number of macrophages obtained from immune chickens (immune macrophages) which contained sporozoites. Significantly fewer immune macrophages treated with immune serum contained sporozoites than untreated normal or immune cells, normal macrophages treated with either serum, or immune macrophages treated with normal scrum. Sporozoites in untreated normal macrophages did not appear to be harmed by the intracellular environment, based on structural observations. The majority of sporozoites in macrophages from all other groups were difficult to distinguish within the cytoplasm and were visibly distorted. It is hypothesized that the presence of fewer infected macrophages in exudates of immune chickens and serum-treated normal chickens was caused by an enhanced ability of these cells to destroy the parasite. Similar observations were noted in the case of sporozoites within degranulated granulocytes of experimental groups. The lack of understanding of the degranulation phenomenon makes it difficult to interpret these findings.  相似文献   

7.
Malaria sporozoites must leave the bloodstream and cross a layer of sinusoidal lining cells in order to infect hepatocytes and undergo exoerythrocytic schizogony. To determine whether Kupffer cells (KC) derived from this layer interact with sporozoites, murine KC were isolated from perfused livers of BALB/cJ mice and incubated in vitro with Plasmodium berghei sporozoites. Isolated KC had characteristic macrophage surface Ag and were phagocytic, ingesting both latex particles and Leishmania major amastigotes. In the absence of immune serum, sporozoites associated with fewer than 10% of these KC. By 30 min, 10% of the cell-associated sporozoites were completely ingested, 30% were in the process of being ingested, and 60% were attached to the surface of the cells. Opsonization of sporozoites with monoclonal or polyclonal antibodies directed against P. berghei circumsporozoite protein markedly enhanced sporozoite association with KC. Up to 40% of cells exposed to opsonized sporozoites had parasites inside or attached to their surfaces. Sporozoites attached to or ingested by KC were uniformly destroyed within 240 min in all cultures; there was no evidence of conversion of sporozoites to the exoerythrocytic stage within KC by light microscopy, and there was no evidence of residual sporozoites, either inside or outside of cells, by either light or electron microscopy. These data suggest that under nonimmune conditions, KC play a minor role in resistance to infection by malaria sporozoites. However, when sporozoites are opsonized by circumsporozoite antibodies, phagocytosis by KC may be an important immune mechanism that prevents parasitization of hepatocytes.  相似文献   

8.
In a myeloid leukemia cell line, the inducibilities of the Fc receptor, phagocytosis and cell motility were compared. Thymidine analogues such as BUdR, BCdR and IUdR blocked the induction of phagocytosis and motility but not induction of the Fc receptor. This BUdR susceptibility in the induction of phagocytosis and motility was lost in a BUdR resistant line which was isolated for its growth capability in a high concentration of BUdR. Actinomycin D and puromycin brought about a marked decrease in the inducibility of phagocytosis but not in that of the Fc receptor. This led us to the following conclusion: There is a genetic control in the inducibility of phagocytosis and motility in this cell line, and the incorporation of BUdR into cellular DNA results in the DNA becoming unresponsive to a differentiation-stimulating factor. In contrast, gene activation does not seem to be necessary for induction of the Fc receptor. The order of induction of several differentiation markers was also discussed.  相似文献   

9.
Sporocysts of Hepatozoon griseisciuri obtained from laboratory-reared spiny rat mites (Echinolaelaps echidninus) and laboratory-reared squirrel mites (Haemogamasus reidi) were made bacteria-free and incubated in trypsin-bile for 30 min at 37 C to release sporozoites. Hepatozoon griseisciuri sporozoites were inoculated into monolayer cultures of primary adult squirrel kidney (PSK) cells and cell line cultures of neonatal squirrel kidney (SK), heart (SH), and spleen (SS) cells. Extracellular sporozoites underwent flexing, gliding, and pivoting movements similar to other coccidian sporozoites. Sporozoites entered cells in all the cultures used and were found intracellularly as early as 1 hr and as late as 10 days after inoculation. In SK, SH, and SS cells, development proceeded only to the trophozoite stage. In PSK cells, immature schizonts and mature schizonts containing 12–40 merozoites were present from 5 through 10 days after inoculation. The finding of pairs of intracellular organisms within a single parasitophorous vacuole in PSK cells suggested that endodyogeny or limited schizogony had occurred.  相似文献   

10.
Albumin was found to have a striking stimulatory effect on motility of Plasmodium sporozoites, while serum globulins had an inhibitory effect. Albumin also preserved viability of sporozoites in vitro at 4 C for several days. P. berghei, P. cynomolgi, and P. falciparum sporozoites each had a distinct and characteristic type of motility. P. berghei sporozoites from oocysts had a different type of motility from that of salivary gland sporozoites, each type presumably associated with different invasive capacities at different times during the life cycle of the parasite. This change in sporozoite motility during development was also associated with other physiologic developmental changes in the sporozoite. The degree of motility of a given pool of sporozoites was to some degree associated with other parameters of metabolic activity of these sporozoites, i.e. infectivity, immunogenicity, and secretory activity. Secretions of the rhoptry-microneme complex may play a role in sporozoite motility.  相似文献   

11.
To examine the mechanism by which polymorphonuclear leukocytes (PMNs) move, phalloidin labelled with fluorescein isothiocyanate was introduced into freshly sampled cells by use of an electric-cell fusion system. The best conditions for treatment were three pulses of direct current at 100 V for a pulse duration of 3 microseconds. The treated cells retained their usual motility when observed under a microscope, so the method was suitable for the analysis of motile living cells. We used the method to study PMNs during locomotion, spreading and phagocytosis. In locomotion, fluorescence first appeared at the head of the cell and shifted gradually along the cell margin from head to tail. In spreading, diffuse fluorescence around the marginal part of the cytoplasm was strongest near both the attachment sites and the perinuclear area of the cell and spots of fluorescence appeared in the cytoplasm. In phagocytosis, fluorescence developed from the attachment sites, spread to the entire phagocytizing area of the cytoplasm and disappeared when phagocytosis ended. Cells treated with cytochalasin B were randomly spotted with fluorescence. Freshly sampled cells had diffuse and scattered fluorescence, without the lines observed in fixed cells.  相似文献   

12.
The site specificity that avian Eimeria sporozoites and, to a more limited degree, other apicomplexan parasites exhibit for invasion in vivo suggests that specific interactions between the sporozoites and the target host cells may mediate the invasion process. Although sporozoite motility and structural and secreted antigens appear to provide the mechanisms for propelling the sporozoite into the host cell,there is a growing body of evidence that the host cell provides characteristics by which the sporozoites recognise and interact with the host cell as a prelude to invasion. Molecules on the surface of cells in the intestinal epithelium, that act as receptor or recognition sites for sporozoite invasion, may be included among these characteristics. The existence of receptor molecules for invasion by apicomplexan parasites was suggested by in vitro studies in which parasite invasion was inhibited in cultured cells that were treated with a variety of substances designed to selectively alter the host cell membrane. These substance included cationic compounds or molecules, enzymes that cleave specific linkages, protease inhibitors, monoclonal antibodies, etc. More specific evidence for the presence of receptors was provided by the binding of parasite antigens to specific host cell surface molecules.Analyses of host cells have implicated 22, 31, and 37 kDa antigens, surface membrane glycoconjugates,conserved epitopes of host cells and sporozoites, etc., but no treatment that perturbs these putative receptors has completely inhibited invasion of the cells by parasites. Regardless of the mechanism,sporozoites of the avian Eimeria also invade the same specific sites in foreign host birds that they invade in the natural host. Thus, site specificity for invasion may be a response to characteristics of the intestine that are shared by a number of hosts rather than to a unique trait of the natural host. Protective immunity elicited against avian Eimeria species is not manifested in a total blockade of parasite invasion. In fact, the effect of immunity on invasion differs according to the eliciting species and depends upon the area of the intestine that is invaded. Immunity produced against caecal species of avian Eimeria, for example Eimeria tenella and Eimeria adenoeides, inhibits subsequent invasion by homologous or heterologous challenge species, regardless of the area of the intestine that the challenge species invade. Conversely, in birds immunised with upper intestinal species, Eimeria acervulina and Eimeria meleagrimitis, invasion by challenge species is not decreased and often is significantly increased.  相似文献   

13.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

14.
In an electron microscopic investigation of the entry of sporozoites of Theileria parva into bovine lymphocytes, the fate of the surface coat of the parasite was traced by immunocytochemical methods. A monoclonal antibody (MAbD1) raised in mice and directed against a surface antigen of sporozoites, was applied to ultrathin frozen sections of bovine lymphocytes infected in vitro. Sites of binding of MAbD1 were localized using a protein A-colloidal gold conjugate as an electron-dense label. The surface of all free sporozoites was labelled. Sporozoites in the process of entering were labelled only on that portion of the membrane not yet tightly bound to the lymphocyte membrane. No label was detected on sporozoites that had completed entry. After fixation with formaldehyde, but not with glutaraldehyde, local areas of labelling were found on lymphocytes in contact with sporozoites and on cells already invaded. The sporozoite organelles, called micronemes, occasionally appeared to contain labelled antigen. No label was found on sporozoites or lymphocytes in control preparations previously exposed to non-specific antibody or treated with protein A-colloidal gold alone. The findings support the conclusion that the sporozoite surface coat, containing the antigen recognized by MAbD1, is shed as the sporozoite enters the host cell.  相似文献   

15.
A new view into the life of malaria parasites is now possible owing to recent advances in imaging techniques and to the generation of tagged parasites. Insights into how parasites interact with their insect vectors and mammalian hosts have been gained by the study of various parasitic forms in their natural environment. Quantitative analysis of Plasmodium ookinete motility has revealed different modes of motility in parasite invasion of the mosquito gut and the extrusion of invaded gut cells from the epithelium. Similar analysis with Plasmodium sporozoites has revealed the importance of parasite motility in transmission from the mosquito vector to the mammalian host.  相似文献   

16.
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.  相似文献   

17.
Malaria sporozoites have the unique capacity to invade two entirely different types of target cell in the mosquito vector and the vertebrate host during the course of the parasite's life cycle. Although little is known about the specific interaction of the sporozoite with its target cells, two sporozoite proteins, circumsporozoite (CS) and thrombospondin-related adhesive protein (TRAP), have been shown to play important roles in the invasion of both cell types. CS protein is a multifunctional protein involved in sporogony, invasion of the salivary glands, the specific arrest of sporozoites in the liver sinusoid, gliding motility of the sporozoite, and hepatocyte recognition and entry. TRAP has been shown to be critical for sporozoite infection of the mosquito salivary glands and liver cells, and is essential for sporozoite gliding motility. This review will focus on the involvement of these molecules in sporozoite motility and the invasion of host cells.  相似文献   

18.
ABSTRACT. Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of "tethers" or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of "tethers" by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.  相似文献   

19.
Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of "tethers" or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of "tethers" by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.  相似文献   

20.
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号