首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoscale porous silicon waveguide for label-free DNA sensing   总被引:3,自引:0,他引:3  
Porous silicon (PSi) is an excellent material for biosensing due to its large surface area and its capability for molecular size selectivity. In this work, we report the experimental demonstration of a label-free nanoscale PSi resonant waveguide biosensor. The PSi waveguide consists of pores with an average diameter of 20nm. DNA is attached inside the pores using standard amino-silane and glutaraldehyde chemistry. Molecular binding in the PSi is detected optically based on a shift of the waveguide resonance angle. The magnitude of the resonance shift is directly related to the quantity of biomolecules attached to the pore walls. The PSi waveguide sensor can selectively discriminate between complementary and non-complementary DNA. The advantages of the PSi waveguide biosensor include strong field confinement and a sharp resonance feature, which allow for high sensitivity measurements with a low detection limit. Simulations indicate that the sensor has a detection limit of 50nM DNA concentration or equivalently, 5pg/mm2.  相似文献   

2.
This paper presents a comprehensive theory and experimental characterisation of the modulation of the fluorescence intensity by the construction of optical interferences on oxidised silicon substrates used for DNA microarrays. The model predicts a 90-fold variation of the fluorescence signal depending on the oxide thickness. For a Cy3 dye, the signal is maximal for a 90 nm oxide thickness corresponding to a 7.5-fold enhancement with respect to a standard glass substrate. For experimental validation of the model, we have prepared Si/SiO2 substrates with different parallel steps of decreasing oxide thicknesses on the same sample using a buffered oxide etch (BOE) etching process after thermal oxidation. The SiO2 surface has been functionalized by a silane monolayer before in situ synthesis of L185 oligonucleotide probes. After hybridisation with complementary targets, the variations of the fluorescence intensity versus oxide thickness are in very good accordance with the theoretical model. The experimental comparison against a glass substrate shows a 10-fold enhancement of the detection sensitivity. Our results demonstrate that a Si/SiO2 substrate is an attractive alternative to standard glass slides for the realisation of fluorescence DNA microarrays whenever detection sensitivity is an important issue.  相似文献   

3.
We developed a self-assembling polymer based on polyallylamine (PAH) for use in DNA chips. Thioctic acid (TA) was covalently attached to PAH in sidechains to immobilize the polymer on a gold surface by self-assembly. N-hydroxysuccinimide-ester terminated probe single-stranded (ss) DNA is easily covalently immobilized onto a TA-PAH-coated gold surface. Finally, the surface was covered with polyacrylic acid, which formed ion complexes with the TA-PAH, to reduce the cationic charge. This ssDNA on a polymer-coated surface recognized a fully matched DNA sequence and restrained nonspecific adsorption of target DNA. The selectivity and efficiency of hybridization was affected by adjusting the ionic strength of sodium chloride.  相似文献   

4.
We report the replication technology of DNA chip using by sequence specific localization of nucleic acids via hybridization and electric transfer of the nucleic acids onto a new substrate without losing their array information. The denatured DNA fragments are first spotted and UV-cross-linked on a nylon membrane. The membrane is then immersed and hybridized in a DNA mixture solution that contains all complementary sequences of the nucleic acids to be hybridized with the DNA fragments on the membrane. The hybridized DNA fragments are transferred to another membrane at the denatured condition. After separating two membranes, the transferred membrane contains a complementary array of DNA fragments. This method can be used for the replication of the same copy of DNA chip repeatedly and moreover could be applied for a personalized DNA chip fabrication, where specific information of each spot of DNA chip is originated from the genetic information of a personal sample.  相似文献   

5.
We report on the fabrication of an optical silicon-based label-free DNA sensor. n-Type crystalline silicon wafers have been electrochemically etched to form porous silicon layers and characterized in terms of porosity, pore distribution, surface composition and photoluminescence. Samples (0.25 cm(2)) have been cut and properly derivatized using trimethoxy-3-bromoacetamidopropylsilane in order to link single strand DNA (ss-DNA). Such a molecule is not commercially available and has been ad-hoc prepared by reacting hydrobromic acid and 3-aminopropyltrimethoxysilane in presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as coupling agent. Trimethoxy-3-bromoacetamidopropylsilane acts as a bridge anchored to the porous silicon surface through the silane group while immobilizing ss-DNA by means of the bromoacetamido moiety. We have found that derivatized samples exhibit a photoluminescence that is stable in time and is not modified after exposure to non-complementary DNA strand. On the other hand, a sensible enhancement of the light emission has been observed when the derivatized samples react with the complementary strand, showing that the specific ss-DNA/complementary DNA (c-DNA) interaction can be optically sensed without using further labeling steps. This strongly strengthens the possible role of silicon as a material for biosensors.  相似文献   

6.
A sensitive new substrate for chymotrypsin   总被引:16,自引:0,他引:16  
  相似文献   

7.
Overview of DNA chip technology   总被引:21,自引:0,他引:21  
DNA chip technology utilizes microscopic arrays (microarrays) of molecules immobilized on solid surfaces for biochemical analysis. Microarrays can be used for expression analysis, polymorphism detection, DNA resequencing, and genotyping on a genomic scale. Advanced arraying technologies such as photolithograpy, micro-spotting and ink jetting, coupled with sophisticated fluorescence detection systems and bioinformatics, permit molecular data gathering at an unprecedented rate. Microarray-based characterization of plant genomes has the potential to revolutionize plant breeding and agricultural biotechnology. This review provides an overview of DNA chip technology, focusing on manufacturing approaches and biological applications.  相似文献   

8.
Molecular-beacon-based array for sensitive DNA analysis   总被引:13,自引:0,他引:13  
Yao G  Tan W 《Analytical biochemistry》2004,331(2):216-223
Molecular beacon (MB) DNA probes provide a new way for sensitive label-free DNA/protein detection in homogeneous solution and biosensor development. However, a relatively low fluorescence enhancement after the hybridization of the surface-immobilized MB hinders its effective biotechnological applications. We have designed new molecular beacon probes to enable a larger separation between the surface and the surface-bound MBs. Using these MB probes, we have developed a DNA array on avidin-coated cover slips and have improved analytical sensitivity. A home-built wide-field optical setup was used for imaging the array. Our results show that linker length, pH, and ionic strength have obvious effects on the performance of the surface-bound MBs. The fluorescence enhancement of the new MBs after hybridization has been increased from 2 to 5.5. The MB-based DNA array could be used for DNA detection with high sensitivity, enabling simultaneous multiple-target bioanalysis in a variety of biotechnological applications.  相似文献   

9.
A thin film transistor (TFT) photosensor fabricated by semiconductor integrated circuit (IC) technology was applied to DNA chip technology. The surface of the TFT photosensor was coated with TiO2 using a vapor deposition technique for the fabrication of optical filters. The immobilization of thiolated oligonucleotide probes onto a TiO2-coated TFT photosensor using gamma-aminopropyltriethoxysilane (APTES) and N-(gamma-maleimidobutyloxy) sulfosuccinimide ester (GMBS) was optimized. The coverage value of immobilized oligonucleotides reached a plateau at 33.7 pmol/cm2, which was similar to a previous analysis using radioisotope-labeled oligonucleotides. The lowest detection limits were 0.05 pmol/cm2 for quantum dot and 2.1 pmol/cm2 for Alexa Fluor 350. Furthermore, single nucleotide polymorphism (SNP) detection was examined using the oligonucleotide-arrayed TFT photosensor. A SNP present in the aldehyde dehydrogenase 2 (ALDH2) gene was used as a target. The SNPs in ALDH2*1 and ALDH2*2 target DNA were detected successfully using the TFT photosensor. DNA hybridization in the presence of both ALDH2*1 and ALDH2*2 target DNA was observed using both ALDH2*1 and ALDH2*2 detection oligonucleotides-arrayed TFT photosensor. Use of the TFT photosensor will allow the development of a disposable photodetecting device for DNA chip systems.  相似文献   

10.
A mask-free, cost-effective dry-etching method for the fabrication of height- and spacing-controlled, pillar-like nanostructures was established in order to detect DNA molecules. The height and spacing of the quartz nanostructure were regulated by successive O(2) and CF(4) reactive ion etching times. The height and spacing of the nanostructures were tuned between 118 and 269 nm and between 107 and 161 nm, respectively. Probe DNA was immobilized on the structure and hybridized with fluorescently-labeled target DNA. Increases in the height and spacing of the nanopillar structure positively correlated with the fluorescence intensity of bound DNA. Usage of the nanostructure increased the DNA detection limit by up to 100-fold.  相似文献   

11.
A new fluorogenic, lanthanide-based oligopeptide substrate for the detection of the zinc-dependent endoprotease thermolysin is described. Using time-resolved fluorescence measurement, a highly sensitive assay for thermolysin was developed with a 50 pM detection limit (3.5 fmol).  相似文献   

12.
Netrium digitus is a representative of the species-rich class Zygnematophyceae (Streptophyta). Its intensive extracellular polysaccharide (EPS) production makes this alga interesting for biotechnological applications with a focus on cosmetics and food additives. Quantitative data on growth and EPS production in suspension and, for the first time, in immobilized culture using lab-scale porous substrate bioreactors, so-called Twin-Layer (TL) systems, is presented. It is shown that the cell as well as the EPS dry weight content is increased at least sixfold in immobilized compared to suspension culture. Due to the high amount of EPS, the biofilms reach a thickness of more than 8 mm after 27 days at 70 μmol photons m?2 s?1 and with 1.5% CO2 supply. Frequent exchange of the growth medium results in a linear cell biomass increase of 2.02?±?0.09 g m?2 growth area day?1 compared to 2.99?±?0.09 g m?2 day?1, when the medium is not exchanged. Under this mode of cultivation, the EPS production is lower and a final concentration of 12.18?±?1.25 g m?2 compared to 20.76?±?0.85 g m?2, when medium was exchanged, is reached. It is clearly demonstrated that the relatively slow growing, but excessively EPS producing, microalgal species N. digitus can be grown in porous substrate bioreactors and that this culturing technique is a promising alternative to suspension culture for the Zygnematophyceae.  相似文献   

13.
A porous silicon biosensor based on P450 enzyme for arachidonic acid detection was developed. A new transduction method is presented with a simultaneous measurement of refractive index and fluorescence intensity changes when the analyte is binding to an enzyme on the porous silicon surface. A fluorophore bound to a cysteine residue in an allosteric position of the haem domain (BMP) of cytochrome P450 BM3 enhances its fluorescence intensity upon interaction with its substrate arachidonic acid, involved in diseases such as Alzheimer's, liver cancer and cellular inflammation processes. BMP has been anchored on porous silicon surface and the new transduction method has been successfully exploited to develop a biosensor for arachidonic acid, reaching a detection limit of 10 μM arachidonic acid in a dynamic range of 10-200 μM. Moreover, the change of the refractive index has been also monitored at the same time, displaying a higher detection limit of 30 μM. Preliminary test were also conducted in plasma proving the high specificity and selectivity of the sensor even in presence of interferents in the range of 50-100 μM. Here we suggest these two detection systems could be used simultaneously to increase the accuracy and the dynamic range of the sensor avoiding a false positive response.  相似文献   

14.
A simple and low cost optical sensor, based on porous silicon nanotechnology, has been used to detect and quantify the presence of atrazine pesticide in water and humic acid solutions. In both cases, a well defined optical signal variation can be registered, even at low concentration as 1 ppm. The phenomenon can be ascribed to the capillary infiltration of liquid into the pores, which changes the average refractive index of the structure. Due to the resonant cavity enhanced operation of the proposed sensors, very low detection limits can be reached.  相似文献   

15.
The genotyping of hepatitis B virus (HBV) has become recently a valuable tool not only for epidemiological reasons but also for the clinical practice. Conventional methods for HBV genotyping typically include amplification of the target DNA sequences with a two-round nested PCR followed by separation of the amplified fragments by gel electrophoresis. A microfluidic chip that couples isotachophoresis (ITP) preconcentration and zone electrophoresis (ZE) separation may provide great advantages for sensitive, rapid and cost-effective clinical analysis. In this study, an HBV genotyping method with only one amplification round was developed by the application of the ITP-ZE chip. All the analysis steps of the ITP-ZE separation including sample injection, stacking and separation were performed continuously, controlled by sequential high-voltage switching. A 2.1cm sample plug was preconcentrated between discontinuous buffers in ITP process, followed by ZE separation. Sensitivity enhancement was obtained through the increase of sample loading volume. The average LOD value of the ITP-ZE microfluidic chip was determined to be 0.0021pg/muL. In a large-scale HBV genotyping test, single round PCR products were analyzed by ITP-ZE microfluidic chip, and the results were compared with that of the conventional method. Among the 200 cases studied, the classification rate obtained with microfluidic chip was 93%, which was 6% higher than that obtained with the conventional method. Method with ITP-ZE chip analysis provides HBV genotyping information in reduced PCR amplification time with higher detection rate when compared with conventional method. This method holds great potential for extrapolation to the abundance of similar molecular biology-based techniques in clinical diagnosis.  相似文献   

16.
A new substrate for subtilisins, anthraniloyl-Ala-Ala-Phe-4-nitroanilide, has been synthesized and characterized. The peptide is a fluorogenic substrate that is intramolecularly quenched without loss of its chromogenic properties and offers a possibility for double-assay kinetic analysis. The kinetic parameters determined for subtilisin Carlsberg are Km = 0.004 mM, kcat = 104 s-1, and those for subtilisin BPN' are Km = 0.020 mM, kcat = 49 s-1. The substrate is extremely sensitive for subtilisins; the specificity constants are 10-fold higher than the corresponding values for the widely used substrate, succinyl-Ala-Ala-Pro-Phe-4-nitroanilide, and 200- to 1000-fold higher than the values obtained with succinyl-Ala-Ala-Phe-4-nitroanilide. The favorable effect of the anthraniloyl group as a P4 residue in the substrate sequence Ala-Ala-Phe-4-nitroanilide was assumed to be due to an ability to stiffen S4-P4 interactions. The mechanism proposed is hydrogen bond formation between the phenol group of tyrosine-104 and the amino group of the anthraniloyl moiety. In the spectrophotometric assay with the new substrate, the lower detection limit for subtilisin Carlsberg was 1 nM.  相似文献   

17.
In this work, to improve the mechanical stability of electrodes based on P450scc for LDL-cholesterol detection and measure, anodic porous alumina (APA) was used. This inorganic matrix, which pores can be tuned in diameter modifying the synthesis parameters, was realized with cavities 275 nm wide and 160 microm deep (as demonstrated with AFM and SEM measurement), to allow the immobilization of P450scc macromolecules preserving their electronic sensitivity to its native substrate, cholesterol. Even if the sensitivity of the APA+P450scc system was slightly reduced with respect to the pure P450scc system, the readout was stable for a much longer period of time, and the measures remained reproducible inside a proper confidentiality band, as demonstrated with several cyclic voltammetry measures. To optimize the adhesion of P450scc to APA, a layer of poly-L-lysine, a poly-cathion, was successfully implemented as intermediate organic structure.  相似文献   

18.
N-Succinyl-alanyl-methionyl-S-benzylcysteine p-nitroanilide has been found to be a very sensitive chromogenic substrate for the assay of cysteine proteinase papain, ficin and bromelain. N-Succinyl-alanyl-S-benzylcysteine p-nitroanilide and N-succinyl-alanyl-alanyl-S-benzylcysteine p-nitroanilide are also suitable for this purpose. These substrates were hydrolyzed only very slightly or not hydrolyzed at all by trypsin.  相似文献   

19.
To explore the application of DNA chip technology for the detection and typing of Human Papillomavirus (HPV), the HPV6, 11, 16 and 18 gene fragments were isolated and printed onto aminosilane-coated glass slides by a PixSys 5500 microarrayer as probes to prepare the HPV gene chips. HPV samples, after being labeled with fluorescent dye by restriction display PCR (RD-PCR) technology, were hybridized with the microarray, which was followed by scanning and analysis. The experimental condition for preparing the HPV gene chips was investigated, and the possibility of HPV genotyping using gene chips was discussed. The technique that was established in this study for preparing HPV gene chips is practical. The results of the present study demonstrated the versatility and inspiring prospect of using this technology to detect and genotype HPV.  相似文献   

20.
SERRS (surface-enhanced resonance Raman scattering) is a vibrational technique, whereby a relatively weak Raman scattering effect is enhanced through the use of a visible chromophore and a roughened metal surface. The direct analysis of DNA by SERRS requires the modification of a nucleic acid sequence to incorporate a chromophore, and adsorption of the modified sequence on to a roughened metal surface. Aggregated metallic nanoparticles are commonly used in the analysis of dye-labelled DNA by SERRS, allowing for detection levels that rival those gained from standard fluorescence-based techniques. In the present paper, we report on how SERRS can be exploited for the analysis of clinically relevant DNA samples. We also report on the ability of nanoparticles to aggregate as the result of a biologically significant event, as opposed to the use of an external charge-modifying agent. The self-assembly of metallic nanoparticles is shown to be a promising new technique in the move towards extremely sensitive methods of DNA analysis by SERRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号