首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
张明海 《生物技术》2003,13(6):48-49
控制光照周期中的光照强度(I)和光照/黑暗比率(L/D)对鹿茸的生长发育影响的作用明显,其中,在I=300lx和L/D=1.00-3.00时,鹿茸的生长发育最好。此外,鹿体内的性腺激素对鹿茸的生长发育有明显的作用。  相似文献   

2.
Six red deer stags from age 4 months were kept in a light-proof room under an artificial photoperiod consisting of 5.5 cycles of alternate 2-month periods of 16 h light and 8 h dark (16L:8D) and 8L:16D. At 2 or 3 weekly intervals from 10 months of age through 4 cycles, the stags were anaesthetized with xylazine and challenged i.v. with 10 micrograms GnRH. Blood samples were withdrawn immediately before and 10 and 60 min after injection. LH and testosterone concentrations were measured in all samples by RIA. Antler status was recorded daily. Peak LH values on each sampling day occurred in the sample taken 10 min after GnRH stimulation while peak testosterone occurred in the sample taken at 60 min. There were 4 cycles of LH and testosterone secretion accompanied by 4 antler cycles in the stags. The highest LH responses were detected during short days (8L:16D), and the highest testosterone responses were detected around the time of the change from short to long days. The responses of both hormones were lowest at the end of periods of long days or the beginning of short days. The increased pituitary LH response to GnRH was evident 4 weeks after the change to short days which are stimulatory for gonadal development. Antler casting occurred at the end of long days and cleaning at the end of short days. It is considered that antler cycles were due to the ability of the stags to vary release of LH and testosterone in response to changes in the artificial photoperiod.  相似文献   

3.
European starlings (Sturnus vulgaris ) maintained under chronic 12L:12D exhibit testicular cycles with a periodicity of 9–10 months. These circannual testicular cycles incorporate all of the physiologically distinct phases observed during gonadal cycles in starlings under temperate-zone photoperiods. Starlings maintained under chronic 6L-18D also undergo testicular cycles but these cycles: (a) have a relatively short periodicity (about 6 months); (b) include periods of testicular involution, though not to the minimal quiescent level for this species; and (c) do not include the physiologically distinct photorefractory phase separating testicular cycles in starlings under chronic 12L:12D and under temperate-zone photoperiods. While it is possible that testicular cycles in starlings under certain daily light regimens of fixed duration are a function of an endogenous circannual reproductive rhythm, we believe that the testicular cycles generated under both 12L:12D and 6L:18D are the product of gonadotropin secretion rates controlled by circadian (not circannual) oscillations periodically entrained by these chronic photoperiods.  相似文献   

4.
A 2-year study was conducted to determine under controlled conditions the role of the pineal gland in regulating the seasonal changes in antler growth and reproduction of male white-tailed deer. Blood samples were drawn from 6 pinealectomized (PX) and 18 control (C) deer at intervals of 2 weeks and analyzed for testosterone (T) and prolactin (Prl). Relative scrotal circumference and main beam antler length were recorded. Relative scrotal circumference was similar in PX and C groups, but the normal pattern was delayed 1 to 3 months in the PX deer relative to the C deer. The mean dates of beginning antler growth, velvet shedding, antler casting and pelage changes were significantly later in both years for PX deer than in C deer. Testosterone concentrations peaked 1 month later in the PX deer than in the C deer for both yearling and 2-year-old deer. Prl concentrations in C deer, but not in PX deer, were correlated highly with day length, and the PX deer were delayed relative to the C deer in showing the normal Prl pattern. Increasing levels of Prl in both groups coincided with beginning antler growth in both years. These results indicate that the pineal gland does not originate the seasonal cycles of male white-tailed deer but may synchronize cycles among individual deer, and regulate the circannual rhythm of Prl concentrations which may in turn influence other hormonal cycles.  相似文献   

5.
Although many species display endogenous circannual rhythms of biological activity that are synchronized by day length, the specific photoperiodic requirements for synchronizing such rhythms are not established for any species. We tested the hypothesis that the circannual reproductive rhythm of sheep can be synchronized by exposure to just one or two discrete blocks of photoperiodic information each year. Ewes were pinealectomized to prevent their ability to transduce photoperiodic information into altered reproductive neuroendocrine activity. During the 53/4 yr following pinealectomy, specific photoperiodic signals were restored for discrete periods of time via replacement of 24-h patterns of melatonin, the pineal hormone that transmits photic information to the reproductive neuroendocrine axis. The ewes were kept in a 12-mo photoycycle that alternated between short (8L:16D) and long (16L:8D) days every 6 mo and that was 6 mo out of phase with the geophysical year. Pineal-intact control ewes exhibited synchronous annual reproductive cycles. Noninfused pinealectomized control ewes did not exhibit synchronous cycles. Pinealectomized ewes infused with alternating 70-day blocks of short- and long-day patterns of melatonin every 6 mo for the first 21/2 yr of the experiment exhibited synchronous annual reproductive cycles that were 6 mo out of phase with those of ewes maintained outdoors. This synchrony persisted when the frequency of the melatonin treatment was reduced to just one 70-day block of a long-day pattern of melatonin each 365 days. Cycle period was 368 +/- 3 days; standard deviation of the date of onset of reproductive induction averaged only 3 days. Our study provides the first direct evidence that a single block of photoperiodic information a year can synchronize a circannual rhythm.  相似文献   

6.
In the dark, the lymphocyte count decreased while the monocyte and basophil counts increased in the carp blood. Conversely, the lymphocyte count increased and the monocyte and basophil counts decreased during 12D:12L, 16D:8L, and 0D:24L dark/light cycles, which can be considered as an improvement of the overall physiological state of the yearlings. High light intensity improved the physiological state of carp yearlings, while zero illumination had an inverse effect. No pattern has been revealed for the effect of intermediate dark/light cycles.  相似文献   

7.
Rhythms of labeling and mitotic indices were studied in the hindlimb epidermis of the anuran tadpole Rana pipiens under different light/dark (LD) cycles and daylengths in order to examine the role of the various parameters of the lighting regimen in setting the periods of the rhythms and the timing of the cell proliferation peaks. Altering the time of, or inverting, the 12 h light period on a 24 h day resulted in phase shifting of basically bimodal circadian rhythms with peaks in the light and dark. Thus the cell proliferation rhythms were entrained to the LD cycle. These rhythms also entrained to noncircadian schedules since they lengthened on a 15L : 15D cycle and shortened on a 9L : 9D cycle, although the bimodal characteristic of a peak in the light and a peak in the dark remained. Studies of 18L: 6D and 6L : 18D cycles in which either the time of onset of light or dark was changed relative to the 12L: 12D control indicated that the onset of dark may regulate the timing of the labeling index peaks while the onset of light may determine the time of occurrence of mitotic index peaks. Control of the timing of labeling and mitotic index peaks by different parameters of the LD cycle suggests a mechanism for cell cycle regulation by the environmental lighting schedule. Analysis of the rhythms on all the cycles studied suggested that labeling index rhythms equal the length of, or twice the length of, the dark period. Mitotic index rhythms equal the daylfength or a multiple of the length of the dark period.  相似文献   

8.
Since Rana pipiens tadpoles injected with thyroxine (T4) early in the dark develop more slowly than those injected in the light, we studied the effect of giving a light pulse of 1 hr early in the dark. Tadpoles injected under a 7.5-W red light bulb in a darkened room with 0.2 microgram T4 daily at 2200 hr went through metamorphosis faster on a 12L:3D:1L:8D cycle with a light pulse after injection than on a 12L:12D cycle without a light pulse, and even faster on a 12L:1.5D:1L:9.5D cycle with a light pulse before the injection. Thus a 1-hr light pulse counteracted the metamorphic delay resulting from administration of T4 in the dark, and set in motion the conditions that resulted in a more rapid response to an injection of T4. However, a 1-hr light pulse in the early dark had no effect on growth and development of older or younger untreated tadpoles or those constantly immersed in 30 micrograms/liter T4. Larvae on 21L:3D with T4 injection in the dark and on 12L:3D:1L:8D with T4 injection at 0700 hr just before the start of the main light phase progressed faster than 12L:3D:1L:8D with injection at 2200 hr in the dark before only a 1-hr light pulse. Thus the length of the light phase immediately after T4 injection was significant. There was no difference on 12L:12D and 12L:3D:1L:8D cycles in the effectiveness of daily injections of 10 micrograms prolactin (PRL) in the early dark at 2200 hr in promoting tail growth or antagonizing tail resorption induced by T4 immersion. Under these conditions, PRL utilization did not appear to be inhibited by the light pulse.  相似文献   

9.
本文在2014—2016年三个冬季(12月—翌年2月)收集了北京南海子麋鹿苑半散放麋鹿自然脱落的角,并观察和记录了2015—2017年发情期(5—9月)群主更替和2016—2018年产仔期(3—7月)麋鹿幼仔出生情况,结合2014—2018年年平均气温、季平均气温、月平均气温、年降雨量、雨季开始时间、种群密度等环境因子,对鹿角脱落、群主更替、产仔等繁殖特征的年节律及其环境影响因子进行了研究。结果表明:1)麋鹿鹿角脱落、群主更替、产仔的年节律均存在年际差异。2)鹿角脱落时间为12月开始,1月下旬或2月上旬结束。3)发情期为5月下旬或6月上旬开始,9月上旬结束;2015—2017年发情期时间有延长的趋势。4)产仔期为3月中旬或4月中旬开始,5月下旬或7月下旬结束。5)麋鹿鹿角脱落、群主更替、产仔的年节律存在明显的同步关系,其中鹿角脱落开始时间、鹿角脱落高峰期、鹿角脱落结束时间、第一次发情期开始时间、群主更替高峰期、产仔期开始时间、产仔高峰期、产仔期结束时间与前一年度比较均出现同步提前的现象。6)鹿角脱落年节律存在随着12月平均气温升高而提前的现象;产仔期开始时间和产仔高峰期存在随着前一年9月平均气温的升高而提前的现象。7)鹿角脱落年节律表现出随着年降雨量的增多而提前的现象;第一次发情期开始时间、群主更替高峰期的年节律表现出随着前一年度年降雨量的增多而提前的现象。8)麋鹿鹿角脱落、群主更替、产仔的年节律均不存在随着种群密度升高或降低而提前或延迟的现象。麋鹿繁殖特征的年节律是一个复杂的过程,受气候、营养、种群密度、纬度等环境因子的影响。  相似文献   

10.
Mink are seasonal photosensitive breeders; testis activity is triggered when days have less than 10 h light. Increasing and decreasing plasma concentrations of prolactin induce the spring and autumn moults. In a 5 year experiment, males were maintained under short days (8 h light:16 h dark) at 13 degrees C or long days (16 h light:8 h dark) at 21 degrees C, winter and summer conditions, respectively. Under winter and summer conditions, circannual cycles of prolactin secretion and moulting were observed at intervals of about 11 months. Recurrence of testis cycles was not evident. In a second experiment, males were maintained under an 8 h light:16 h dark cycle from the winter solstice or under 10 h light:14 h dark, 12 h light:12 h dark or 14 h light:10 h dark cycles from 10 February. Under 8 h light:16 h dark cycle, testis regression was slightly later than under natural conditions, indicating photorefractoriness. However, mink remained sensitive to light: the longer the photoperiod, the faster the testis regression. In a third experiment, males were transferred under 8 h light:16 h dark or 16 h light:8 h dark from 15 May (group 1), 12 June (group 2) or 4 July (group 3); males submitted to long days received melatonin capsules on the day of transfer. Increasing concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and testis volume were shown by half the males in group 2 and nearly all the males in group 3; the constant release of melatonin from implants was more efficient than short days; but in the three groups, prolactin concentrations decreased in the few days after short-day or melatonin treatment. Overall, the results demonstrate endogenous circannual rhythms of prolactin secretion, body weight and moulting. Although a refractory period to short days was observed, the annual cycle of testis activity totally relies on the annual changes in daylength.  相似文献   

11.
Pubertal development in prairie deer mice (Peromyscus maniculatus bairdii) is accelerated by exposure of juveniles to a long-day photoperiod, and, conversely, retarded by exposure to short days. The purpose of the present study was to evaluate the possible involvement of the circadian system in the photoperiodic regulation of puberty. Weanling males, previously housed on a short-day light cycle of 6L:18D, were subjected to a "resonance" protocol in which they received one of the following light cycles: 6L:18D, 6L:30D, 6L:42D, 6L:54D, or 16L:8D. Post-weaning exposure to cycles of 16L:8D, 6L:30D, and 6L:54D stimulated reproductive organ growth as measured at 6 weeks of age. Exposure to cycles of 6L:18D and 6L:42D failed to stimulate reproductive development. These data support the hypothesis that young male deer mice use a circadian rhythm of responsiveness to light to measure photoperiodic time and, consequently, regulate pubertal development.  相似文献   

12.
Five adult male fallow deer were maintained in a barn with artificial light control. In a previous experiment, three 6-month photoperiodic cycles entrained morphogenetic and associated physiological values that revealed typical relationships to the antler cycle. Presented here, the light cycle was accelerated to three 4- and one 3-month photoperiods in the same group. Each artificial photoperiod generally resulted not only in an almost complete antler cycle but also in an entire cycle of seasonal fluctuations in neck girth. Increases in plasma levels of alkaline phosphatase (AP), total-, LDL- and HDL-cholesterol, were generally entrained and the maxima revealed positive correlations with antler formation, but the relationships slightly diverged. In neck girth and creatinine, positive correlations to the hard antler period as well as to each other prevailed but diverged. In the 3-month photoperiodic cycle, these relationships were out of synchrony. In the second 4-month cycle, two bucks "missed" shedding and subsequent casting, but commenced antler growth in the following cycle with an in-time shedding. The possibility of desynchronisation of physiological conditions and the question of an endogenous circannual mechanism interacting with daylight are discussed. At the end of the 3-month cycle, experimental indoor and natural outdoor casting was coincident so the group was transferred to outside conditions for re-synchronisation. After spending altogether 36 months in frequency altered photoperiods, the represented values were neither synchronized nor revealed their typical relationships to the antler cycle, except of AP and neck volume. In the second cycle of re-synchronisation, all parameters, except of creatinine, appeared to be resynchronized.  相似文献   

13.
This study aims to determine if Pregnant Mare Serum Gonadotrophin (PMSG), used for oestrous synchronization in multiparous lactating does, could be replaced by one of the following lighting schedules without impairing reproductive performance: (a) 12-h L (light)/12-h D (dark) or (b) 8-h L/16-h D, until day 6 before artificial insemination (AI), when in both cases photoperiod was changed to 16-h L/8-h D and maintained until the day of AI, and in the following 4 days post Al the light hours were progressively reduced to the initial schedules. Two groups of 20 does each were respectively submitted to one of the lighting schedules specified above. All does were artificially inseminated in 6 consecutive cycles at 42 days intervals. In the first, third and fifth AIs, PMSG (20 IU/doe via sc 48 h before AI) was used in the two groups of does, whereas in the second, fourth and sixth Als no hormonal treatment was used. Degree of oestrous synchronization (also referred in text as sexual receptivity) was estimated by the colour of the vulva at AI. Reproductive performance of does was evaluated based on fertility (kindling rates), prolificity, mortality at birth, mortality at 21 days post birth, weight of the litter at 21 days post birth and number of weaned rabbits. Oestrous was better synchronized when PMSG was used with any of the two lighting programs. Without using PMSG, a photoperiod of 12-h L/12-h D until 6 days before AI resulted in a better sexual receptivity of does than 8-h L/16-h D. Fertility, prolificity, mortality of young rabbits at 21 days, the weight of the litters at 21 days and the number of weaned rabbits did not vary with the lighting program and were not affected by the PMSG treatment. Mortality at birth, however, was higher (+1 dead kit per litter) in litters housed under a light program of 12-h L/12-h D. Global productivity (number of weaned rabbits per 100 inseminated does) was better when using PMSG, for both lighting schedules. When using a photoperiod of 12-h L/12-h D until 6 days before AI, and omitting the PMSG treatment, global productivity was scarcely reduced, however, it was considerably impaired when using a photoperiod of 8-h L/16-h D until 6 days before AI and no PMSG treatment.  相似文献   

14.
The objective of this study was to investigate the entrainment of melatonin rhythms in rams using symmetrical light-dark cycles of different period length. Five groups of six He de France rams were kept in 12L: 12D for 7 weeks and then (i) 12L: 12D, (ii) 11L: 11D, (iii) 10L: 10D, (iv) 13L: 13D and (v) 14L: 14D for a further 3 weeks. Environmental factors other than the light dark cycle were not controlled. The onset and offset of the plasma melatonin rhythm in DD after 3 weeks of the respective light treatments was assessed for 48 hr, immediately after transferring to DD. The duration of secretion in DD was positively related to the length of the previous dark phase. The phase of the melatonin rhythm with respect to the anticipated dark phase suggested entrainment with no change in phase-relationship to the zeitgeber by 12L: 12D and 13L : 13D. Entrainment with a phase-delay or a phase-advance was apparent after 11L: 11D and 14L: 14D, but the individual rhythms were not all synchronized with respect to each other after 10L: 10D. Activity recordings for 2-3-week periods during 12L: 12D, 10L: 10D and 14L: 14D all showed a major 24-hr component at all times, with activity during the light phase in 12L: 12D. It appears that melatonin may be readily desynchronized from overt activity-rest cycles in sheep. The upper and lower entrainment limits are probably greater than 28 hr and close to 20 hr cycles, respectively.  相似文献   

15.
Groups of adult photosensitive male yellow-throated sparrows were subjected to different intermittent light cycles viz. 2L/2D, 3L/3D, 4L/4D, 8L/8D and 12L/12D besides two control groups held on 8L/16D and 18L/6D photoperiodic treatments. Testicular growth occurred in 2L/2D, 3L/3D, 4L/4D and 18L/6D but not in 8L/16D, 12L/12D and 8L/16D photoperiodic regimes. The results of this experiment can be interpreted on the basis of circadian rhythm in photosensitivity in an avian external coincidence model. Our findings suggest that multiple light flashes are more effective than a single broad pulse of light of equal duration.  相似文献   

16.
Vinod  Kumar P. D. Tewary 《Ibis》1983,125(3):305-312
Little is known about the effects of photoperiod on avian migrants that visit southeast Asia. In this paper, we report experiments performed on an emberizid finch, the Black-headed Bunting Emberiza melanocephala , to investigate its photoperiodic responses under artificial photoperiods, and continuous light and darkness.
Two series of experiments were performed with the photosensitive male birds. In the first series, different groups were exposed to seven different artificial photoperiods: 3L/21D, 6L/18D, 8L./16D, 11L/13D, 12L/12D, 15L/9D and 20L/4D, for 30 days. They were weighed and laparotomized at the beginning and end of the experiments. The birds responded to 12L/12D, 15L/9D and 20L/4D, but not to 3L/21D, 6L/18D, 8L/16D and 11L/13D. In the second series, photosensitive birds were placed under continuous light (LL) and dark (DD) conditions for 130 and 90 days. Periodic observations indicated that testicular growth and fattening followed by involution and fat-depletion had resulted in birds under LL, indicating the onset of photorefractoriness, while DD had no effect either on gonads or fattening in the buntings.
Our results demonstrate that light stimulation is a prerequisite to reproductive and metabolic activities (pre-migratory and migratory changes, fattening and weight gain) in the Black-headed Bunting, which has a photoperiodic threshold to these events at between 11 and 12 h daily photoperiods.  相似文献   

17.
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.  相似文献   

18.
Cell division and chloroplast replication in Heterosigma akashiwo(Hada) Hada occurred as separate synchronous events during thecell cycle when cells were subjected to light-dark regimes.Under three different photoperiodic cycles of 10L/14D (10 hlight/14 h dark), 12L/12D or 16L/8D, cell division began athour 19–20 and finished at hour 23–26 after theonset of the light period, while chloroplast replication beganat hour 20–22 after the onset of the dark period. Almostall the cells divided only once in the 12L/12D cycle. The rateof increase in chloroplast number during one light-anddark cyclewas always equal to that in cell number in every photoperiodexamined. Light was essential for both cell division and chloroplast replication,but the minimum light period necessary for each event differed.When the light period was shorter than 6 h, no cell divisionoccurred; when it was shorter than 3 h, no chloroplast replicationoccurred. (Received February 26, 1987; Accepted June 17, 1987)  相似文献   

19.
Endogenous circannual clocks are found in many long-lived organisms, but are best studied in mammal and bird species. Circannual clocks are synchronized with the environment by changes in photoperiod, light intensity and possibly temperature and seasonal rainfall patterns. Annual timing mechanisms are presumed to have important ultimate functions in seasonally regulating reproduction, moult, hibernation, migration, body weight and fat deposition/stores. Birds that live in habitats where environmental cues such as photoperiod are poor predictors of seasons (e.g. equatorial residents, migrants to equatorial/tropical latitudes) rely more on their endogenous clocks than birds living in environments that show a tight correlation between photoperiod and seasonal events. Such population-specific/interspecific variation in reliance on endogenous clocks may indicate that annual timing mechanisms are adaptive. However, despite the apparent adaptive importance of circannual clocks, (i) what specific adaptive value they have in the wild and (ii) how they function are still largely untested. Whereas circadian clocks are hypothesized to be generated by molecular feedback loops, it has been suggested that circannual clocks are either based upon (i) a de-multiplication ('counting') of circadian days, (ii) a sequence of interdependent physiological states, or (iii) one or more endogenous oscillators, similar to circadian rhythms. We tested the de-multiplication of days (i) versus endogenous regulation hypotheses (ii) and (iii) in captive male and female house sparrows (Passer domesticus). We assessed the period of reproductive (testicular and follicular) cycles in four groups of birds kept either under photoperiods of LD 12L:12D (period length: 24h), 13.5L:13.5D (27 h), 10.5L:10.5D (23 h) or 12D:8L:3D:1L (24-h skeleton photoperiod), respectively, for 15 months. Contrary to predictions from the de-multiplication hypothesis, individuals experiencing 27-h days did not differ (i.e. did not have longer) annual reproductive rhythms than individuals from the 21- or 24-h day groups. However, in line with predictions from endogenous regulation, birds in the skeleton group had significantly longer circannual period lengths than all other groups. Birds exposed to skeleton photoperiods experienced fewer light hours per year than all other groups (3285 versus 4380) and had a lower daily energy expenditure, as tested during one point of the annual cycle using respirometry. Although our results are tantalizing, they are still preliminary as birds were only studied over a period of 15 months. Nevertheless, the present data fail to support a 'counting of circadian days' and instead support hypotheses proposing whole-organism processes as the mechanistic basis for circannual rhythms. We propose a novel energy turnover hypothesis which predicts a dependence of the speed of the circannual clock on the overall energy expenditure of an organism.  相似文献   

20.
This paper describes the detailed characteristics of the circannual pupation rhythm in Anthrenus verbasci determined by laboratory experiments under various photoperiods and temperatures. The frequency distribution of larval duration showed a periodic pattern over 2-3 years and the period was 37-40 weeks under a constant short-day photoperiod (light:dark 12:12) at 20 degrees C. This rhythm showed temperature compensation to some extent under a short-day photoperiod between 17.5 degrees C and 27.5 degrees C. Under alternations of a long-day (light:dark 16:8) and a short-day photoperiod, pupation occurred 21-24.5 weeks after transfer from a long-day to a short-day photoperiod. Therefore, we concluded that the timing of pupation in A. verbasci is controlled by a circannual rhythm and its zeitgeber is a change in photoperiod. Furthermore, when larvae were transferred from a long-day to a short-day photoperiod at various ages, the larval duration after the photoperiodic transfer depended on the time of the transfer. This difference can be explained by phase-dependent phase shifts in the circannual rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号