首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociation of the 7 S oligomer of nerve growth factor prepared from mouse submaxillary gland has been studied by sedimentation velocity as a function of added NaCl and/or EDTA at pH 6.8 in phosphate buffer. Dilution with or without EDTA results in a symmetrical dissociation to the 4.5 S protomer, in agreement with previous work. In the presence of increasing NaCl concentration the 7 S nerve growth factor oligomer undergoes limited dissociation which is characterized by complex boundary formation and the presence of a stable intermediate (weight-average s20, w for the system of 4. 1 S at 2 n NaCl). The dissociation mode is probably asymmetrical in NaCl with the system resulting in an equilibrium mixture of γ and α2β complex (s20,w about 4.7 S). The removal of zinc ion by EDTA causes only a small change in the native equilibrium but destabilizes the complex with respect to salt-mediated dissociation, leading to complete dissociation to subunits at relatively low concentrations of NaCl. Zinc ion also promotes reassociation of mixtures of isolated α + β or β + γ subunits. Thus, a structural role of zinc ion in stabilizing subunit interactions, probably α ? β or β ? γ, is proposed. The specificity of the interactions with zinc ion and the specificity of the ionic interactions stabilizing the oligomer are further evidence for a biological specificity, if not function, of the oligomer.  相似文献   

2.
The binding of the 18S rRNA of the 40S subunits of wheat germ ribosomes to an oligodeoxyribonucleotide complementary to the 1112–1123 region of the central domain of this RNA molecule has been studied. The selective binding of this oligomer to the complementary RNA fragment and the inhibition of the translation of uncapped chimeric RNA containing enhancer sequences in the 5′-untranslated region upstream of the reporter sequence coding for β-glucuronidase has been shown in a cell-free protein-synthesizing system. The use of a derivative of the aforementioned oligomer containing an alkylating group at the 5′ end allowed for the demonstration that the 1112–1123 region of 18S RNA can form a heteroduplex with the complementary sequence of the oligomer. The data obtained show that the 1112–1123 region in loop 27 of the central domain of 18S RNA of 40S ribosomal subunits is exposed on the subunit surface and probably participates in the cap-independent binding of the subunits to mRNA due to the complementary interaction with the enhancer sequences.  相似文献   

3.
The reaction pattern with N-[14C]ethylmaleimide served to follow conformational changes of 30 S ribosomal subunits that are induced by association with 50 S subunits and by the binding of aminoacyl-tRNA to 70 S ribosomes either enzymatically or non-enzymatically.The usefulness of the reaction with N-ethylmaleimide in discerning different conformational forms of the ribosome was previously demonstrated (Ginzburg et al., 1973) in an analysis of inactive and active 30 S subunits (as obtained at low Mg2+ and after heat reactivation, respectively). The reaction pattern of the 30 S moiety of 70 S ribosomes differs from the pattern of isolated active subunits (the only form capable of forming 70 S ribosomes) in both the nature of the labeled proteins and in being Mg2+-dependent. The reaction at 10 mm-Mg2+ reveals the following differences between isolated and reassociated 30 S subunits: (1) proteins S1, S18 and S21 that are not labeled in isolated active subunits, but are labeled in the inactive subunits, are highly reactive in 70 S ribosomes; (2) proteins S2, S4, S12 and S17 that uniquely react with N-ethylmaleimide in active subunits are all rendered inaccessible to modification after association; and (3) proteins S9, S13 and S19, that react in both active and inactive 30 S subunits, are labeled to a lesser extent in the 70 S ribosomes than in isolated subunits. This pattern is altered in two respects when the reaction with the maleimide is carried out at 20 mm-Mg2+; protein S18 is not modified while S17 becomes labeled.The differences in reaction pattern are considered as manifesting the existence of different conformational forms of the 30 S subunit in the dissociated and associated states as well as of different forms of 70 S ribosomes. The 30 S moiety of 70 S ribosomes at 10 mm-Mg2+ resembles the inactive subunit, while some of the features of the active subunit are preserved in the 70 S ribosome at 20 mmMg2+. The structural changes appear to be expressed in the functioning of the ribosome: non-enzymatic binding of aminoacyl-tRNA to active 30 S subunits is suppressed by 50 S subunits at 10 mm but not at 20 mm-Mg2+ (Kaufmann &; Zamir, 1972). The fact that elongation factor Tu-mediated binding is not suppressed by 50 S subunits raises the possibility that the function of the elongation factor might involve the facilitation of a conformational change of the ribosome. The analysis of different ribosomal binding complexes with N-ethylmaleimide showed that the binding of poly(U) alone results in a decrease in the labeling of S1 and S18. Binding of aminoacyl-tRNA, on the other hand, is closely correlated with the exposure of S17 for reaction with the maleimide. A model is outlined that accounts for this correlation as well as for the proposed role of elongation factor Tu.  相似文献   

4.
5.
The large subunit of ribulose bisphosphate carboxylase from Anacystis nidulans 6301, and the β subunit of chloroplast ATP synthase from maize, were fused to the transit peptide of the small subunit of ribulose bisphosphate carboxylase from soybean. These proteins were assayed for post-translational import into isolated pea chloroplasts. Both proteins were imported into chloroplasts. Imported large subunits were associated with two distinct macromolecular structures. The smaller of these structures was a hybrid ribulose bisphosphate carboxylase holoenzyme, and the larger was the binding protein oligomer. Time-course experiments following import of the large subunit revealed that the amount of large subunit associated with the binding protein oligomer decreased over time, and that the amount of large subunit present in the assembled holoenzyme increased. We also observed that imported small subunits of ribulose bisphosphate carboxylase, although predominantly present in the holoenzyme, were also found associated with the binding protein oligomer. In contrast, the imported β subunit of chloroplast ATP synthase did not assemble into a thylakoid-bound coupling factor complex.  相似文献   

6.
7.
We have cloned the M and S genes of the restriction-modification (R-M) system AhdI and have purified the resulting methyltransferase to homogeneity. M.AhdI is found to form a 170 kDa tetrameric enzyme having a subunit stoichiometry M2S2 (where the M and S subunits are responsible for methylation and DNA sequence specificity, respectively). Sedimentation equilibrium experiments show that the tetrameric enzyme dissociates to form a heterodimer at low concentration, with Kd ≈ 2 µM. The intact (tetrameric) enzyme binds specifically to a 30 bp DNA duplex containing the AhdI recognition sequence GACN5GTC with high affinity (Kd ≈ 50 nM), but at low enzyme concentration the DNA binding activity is governed by the dissociation of the tetramer into dimers, leading to a sigmoidal DNA binding curve. In contrast, only non-specific binding is observed if the duplex lacks the recognition sequence. Methylation activity of the purified enzyme was assessed by its ability to prevent restriction by the cognate endonuclease. The subunit structure of the M.AhdI methyltransferase resembles that of type I MTases, in contrast to the R.AhdI endonuclease which is typical of type II systems. AhdI appears to be a novel R-M system with properties intermediate between simple type II systems and more complex type I systems, and may represent an intermediate in the evolution of R-M systems.  相似文献   

8.
9.
The yeast cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous serine–threonine kinase, encompassing three catalytic (Tpk1–3) and one regulatory (Bcy1) subunits. Evidence suggests PKA involvement in DNA damage checkpoint response, but how DNA repair pathways are regulated by PKA subunits remains inconclusive. Here, we report that deleting the tpk1 catalytic subunit reduces non-homologous end joining (NHEJ) efficiency, whereas tpk2-3 and bcy1 deletion does not. Epistatic analyses revealed that tpk1, as well as the DNA damage checkpoint kinase (dun1) and NHEJ factor (nej1), co-function in the same pathway, and parallel to the NHEJ factor yku80. Chromatin immunoprecipitation and resection data suggest that tpk1 deletion influences repair protein recruitments and DNA resection. Further, we show that Tpk1 phosphorylation of Nej1 at S298 (a Dun1 phosphosite) is indispensable for NHEJ repair and nuclear targeting of Nej1 and its binding partner Lif1. In mammalian cells, loss of PRKACB (human homolog of Tpk1) also reduced NHEJ efficiency, and similarly, PRKACB was found to phosphorylate XLF (a Nej1 human homolog) at S263, a corresponding residue of the yeast Nej1 S298. Together, our results uncover a new and conserved mechanism for Tpk1 and PRKACB in phosphorylating Nej1 (or XLF), which is critically required for NHEJ repair.  相似文献   

10.
DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The Escherichia coli primosome is a complex of proteins and DNA responsible for reloading the replication helicase DnaB. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. NMR analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in Escherichia coli.  相似文献   

11.
Properties of chromatin subunits from developing trout testis.   总被引:5,自引:0,他引:5  
When a sample of trout testis nuclei is digested with micrococcal nuclease, the DNA is cleaved almost entirely to discrete fragments approximately 200 base pairs long and multiples thereof. The same DNA fragments can be obtained when isolated chromatin, as opposed to intact nuclei, is nuclease digested. These DNA fragments can also be found in discrete chromatin "subunits" isolated from nuclease-digested nuclei. Sedimentation through sucrose gradients or velocity sedimentation in an analytical ultracentrifuge separates these chromatin subunits into 11 S (monomer), 16 S (dimer), and 22 S (trimer) etc. species. Subunits can also be fractionated on a Sepharose 2B column equilibrated and run in low salt. High salt (greater than 40 mM NaCl) or divalent cations (congruent to 5 mM) cause subunit precipitation. Chromatin subunits have a protein to DNA ratio of approximately 1.2 and contain all the histones, including the trout-specific histone T. There are, however, no detectable nonhistone chromosomal proteins. Mg-2+ precipitates of the 11 S chromatin monomers, when pelleted, are thin and clear, while oligomer Mg-2+ pellets are thick and white. This could reflect a more symmetrical or ordered packing of 11 S monomers, which are deficient in histone I. This histone may cross-link the larger oligomers, resulting in a disordered Mg-2+ complex. These results are consistent with the subunit model of chromatin structure, based on 200 base pair long regions of DNA associated with histones. These subunits would be separated by nuclease-sensitive DNA spacer regions and cross-linked by histone I.  相似文献   

12.
13.
14.
Acetylcholinesterase (EC 3.1.1.7) purified by affinity chromatography from 1.0 m ionic strength extracts of electric organ from the eel Electrophorus electricus consists of a mixture of 18 and 14 S enzyme forms. When examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate without exposure to disulfide reducing agents, these purified preparations show two major high molecular weight bands (>300,000), labeled oligomers A and B, in addition to a major band corresponding to catalytic subunit dimers (150,000 Mr). All these major bands reflect intersubunit disulfide bonding. The 18 and 14 S forms in purified preparations were separated by extensive sucrose gradient centrifugation. Gel analyses of the isolated 18 and 14 S pools indicated that the larger oligomer A derives from the 18 S pool, while oligomer B is found primarily in the 14 S pool. These observations support a previous model for 18 S acetylcholinesterase (T. L. Rosenberry and J. M. Richardson (1977) Biochemistry, in press) which considers this molecule to consist of one oligomer A unit, composed of three pairs of catalytic subunits disulfide-bonded to a collagen-like tail structure, and three catalytic subunit dimers. Proteolytic cleavage of the tail structure in the 18 S form can occur to release an 11 S enzyme tetramer containing a residual tail fragment and to leave a 14 S form. We propose this 14 S form to consist of one oligomer B unit, composed of two pairs of catalytic subunits disulfide-bonded to the remaining tail structure, and two catalytic subunit dimers.  相似文献   

15.
1. At 0-4 degrees C mitochondrial ribosomes (55S) dissociate into 39S and 29S subunits after exposure to 300mm-K(+) in the presence of 3.0mm-Mg(2+). When these subunits are placed in a medium containing a lower concentration of K(+) ions (25mm), approx. 75% of the subparticles recombine giving 55S monomers. 2. After negative staining the large subunits (20.3nm width) usually show a roundish profile, whereas the small subunits (12nm width) show an elongated, often bipartite, profile. The dimensions of the 55S ribosomes are 25.5nmx20.0nmx21.0nm, indicating a volume ratio of mitochondrial to cytosol ribosomes of 1:1.5. 3. The 39S and 29S subunits obtained in high-salt media at 0-4 degrees C have a buoyant density of 1.45g/cm(3); from the rRNA content calculated from buoyant density and from the rRNA molecular weights it is confirmed that the two subparticles have weights of 2.0x10(6) daltons and 1.20x10(6) daltons; the weights of the two subunits of cytosol ribosomes are 2.67x10(6) and 1.30x10(6) daltons. 4. The validity of the isodensity-equilibrium-centrifugation methods used to calculate the chemical composition of ribosomes was reinvestigated; it is confirmed that (a) reaction of ribosomal subunits with 6.0% (v/v) formaldehyde at 0 degrees C is sufficient to fix the particles, so that they remain essentially stable after exposure to dodecyl sulphate or centrifugation in CsCl, and (b) the partial specific volume of ribosomal subunits is a simple additive function of the partial specific volumes of RNA and protein. The RNA content is linearly related to buoyant density by the equation RNA (% by wt.)=349.5-(471.2x1/rho(CsCl)), where 1/rho(CsCl)=[unk](RNP) (partial specific volume of ribonucleoprotein). 5. The nucleotide compositions of the two subunit rRNA species of mitochondrial ribosomes from rodents (42% and 43% G+C) are distinctly different from those of cytoplasmic ribosomes.  相似文献   

16.
The subunit S1 is important for pertussis toxin secretion   总被引:14,自引:0,他引:14  
Pertussis toxin is a protein containing five noncovalently linked subunits which are assembled into the monomer A (containing the subunit S1) and the oligomer B (containing subunits S2, S3, S4, and S5 in a 1:1:2:1 ratio). Each of the five subunits is synthesized as a precursor containing a secretory leader peptide and is secreted into the periplasm of Bordetella pertussis where the five subunits are assembled into the oligomeric structure and then released into the culture medium. In the absence of subunit S3 the remaining subunits are not secreted into the medium, thus suggesting that the assembled structure is necessary for the release of the toxin into the supernatant. In this study we describe four B. pertussis mutants which secrete into the medium low amounts of the B oligomer of pertussis toxin. These mutants have single or multiple changes in the gene encoding the S1 subunit and synthesize S1 proteins with altered conformation which are not assembled into the holotoxin and are apparently degraded in the periplasm. These data indicate that while the B oligomer alone has the structural information necessary for the extracellular export of pertussis toxin, the S1 subunit is required for its efficient release into the medium.  相似文献   

17.
Rat liver 40 S ribosomal subunits, in the presence of magnesium ions, bind homologous, resolved Met-tRNAs in the absence of added exogenous proteins. The interaction of the aminoacyl-tRNAs with the particle is dependent on the concentration of magnesium ions in the incubation. At various Mg2+ concentrations examined, binding of the putative initiator Met-tRNAi to 40 S subunits is greater than that observed with Met-tRNAm. Also, binding of Met-tRNAi to 40 S subunits is greater than that obtained with 40 S plus 60 S particles. The initial rate of formation of the 40 S·Met-tRNAi complex is greater at 25 °C than at 37 or 4 °C; decay of the complex, which is observed after 15 min of incubation, is greater at 37 °C but it is slower if 60 S subunits are added after the complex has been formed. If 60 S subunits are added to the incubation with 40 S subunits at the start of the reaction, binding of Met-tRNAi is inhibited; inhibition is also obtained if elongation (binding) factor EF-1 or stripped tRNAs (particularly tRNAMet) are present in the incubation mixture containing 40 S subunits. Acetyl-Met-tRNAi binds to 40 S·ApUpG complex to the same extent as unacetylated Met-tRNAi and, after addition of 60 S subunits, reacts extensively with puromycin; the addition of elongation (translocation) factor EF-2 and GTP do not affect the extent of the puromycin reaction, suggesting that the acMet-tRNAi is bound to a site on the 40 S subunits which becomes the P site on 80 S ribosomes.  相似文献   

18.
Previous studies have shown that Rose Bengal-sensitized photo-oxidation of 30 S ribosomal subunits causes inactivation of tRNA binding and partial loss of poly(U) binding activities (Noller et al., 1971). The present studies, reconstitution of 30 S subunits from 16 S RNA, total protein from modified subunits, and purified proteins from untreated subunits, show that proteins S2 and S3 together completely restore these activities to the reconstituted subunits. The modified proteins are capable of in vitro assembly, and give rise to particles with normal sedimentation constants, showing that restoration of activity is not simply due to correction of an assembly defect.Protein S3 restores poly(U) binding and tRNA binding to the same extent, accounting for the lowered mRNA binding activity of the modified particles as well as a corresponding fraction of the tRNA binding activity. Protein S2 restores the remaining fraction of the tRNA binding activity, but has no effect on poly (U) binding. In 50 S-stimulated tRNA binding, proteins S1 and S5 are required in addition to S2 and S3 for full activity.  相似文献   

19.
20.
The rho subunits that constitute the gamma-aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand-gated chloride channels that give rise to sustained GABA-evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA rho1B and rho2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site-directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild-type rho1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild-type rho2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA rho receptors, e.g., when the serine residue of the rho2A receptor was changed to proline, the response of the mutant receptor to imidazole-4-acetic acid (I4AA) mimicked that of the rho1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various rho receptor subunits. It is noteworthy that the proline residue in native rho1 subunits and the serine residue of rho2 subunits are well conserved in all species, a good indication that the presence of multiple GABA rho subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号