首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a study during the 1970s co-variation of nitrogenase activity and methane formation associated with Sphagnum riparium was observed. This was suggested as evidence for a possible mechanism of hydrogen transfer from cyanobacteria to methanogens. We show experimentally that such a pathway is feasible. In a series of laboratory experiments, using a hydrogenase deficient strain of the heterocystous cyanobacterium Nostoc punctiforme and the hydrogenotrophic methanogen Methanospirillum hungateii in co-cultures, increasing light intensities resulted in elevated nitrogenase activity and methane production. The increase in methane production can be directly deduced from the nitrogenase activity of the N. punctiforme based on hydrogen balance calculations. These experimental results clearly suggest the possible existence of a novel photosynthetically regulated pathway for methane formation.  相似文献   

2.
The present work reports on autotrophic metabolism in four H2/CO2-utilizing acetogenic bacteria isolated from the human colon (two Clostridium species, one Streptococcus species, and Ruminococcus hydrogenotrophicus). H2/CO2-utilization by these human acetogenic strains occurred during both exponential and stationary phases of growth. Acetate was the major metabolite produced by all isolates following the stoichiometric equation of reductive acetogenesis. Furthermore, the ability of these acetogenic bacteria to incorporate 13CO2 into acetate in the presence of H2 in the gas phase demonstrated the utilization of the reductive pathway of acetate formation from a one-carbon compound. Energy conservation during the autotrophic metabolism in colonic acetogens might involve sodium- or proton-chemiosmotic mechanisms. A sodium-dependent ATP generation was only demonstrated in one Clostridium species, whereas sodium could be replaced by potassium in other strains. The minimal thresholds of hydrogen uptake were determined and varied from 1100 to 3680 ppm depending on the acetogenic strain. These values appeared higher than those measured for the colonic methanogen,Methanobrevibacter smithii.  相似文献   

3.
Joint cultivation of the dominant strains of acetogenic, sulfate-reducing and methanogenic microorganisms isolated from water samples of the North Stavropol underground gas storage facility (UGSF) was carried out for revealing their probable trophic relationships. It was shown that acetogenic strains Eubacterium limosum AG12 and Sporomusa sphaeroides AG8-2 growing on methanol could form a considerable pool of hydrogen, which may support development of hydrogenotrophic cultures, the methanogen Methanobacterium formicicum MG134, or the sulfate reducer Desulfovibrio desulfuricans SR12. Growth of this sulfate-reducing strain was not stimulated under joint cultivation with Methanosarcina barkeri MGZ3 on methanol, probably due to its inability to take up low hydrogen concentrations observed during methanosarcina development. The results show that acetogens in the UGSF system are the most important consumers of methanol and hydrogen and after exhaustion of the latter and switching over to methanol utilization they can supply hydrogen to other microorganisms, including methanogens and sulfate reducers. The role of methanosarcina in the UGSF increases as the hydrogen and CO2 reserves are exhausted, and methanogenesis on methanol becomes the main way of its destruction.  相似文献   

4.
Summary Resting cells of a formate-utilizing methanogen (strain HU) were used as a biocatalyser for formic acid production from H2 and bicarbonate. In the presence of methyl viologen, a potent inhibitor of methanogenesis, the cells could accumulate formic acid in the reaction mixture, whereas methane was produced in the absence of the inhibitor. Under optimal conditions (pH 8.0, 32°C, 100% H2 gas phase), 674 mmol·l-1 of formic acid (31 g·l-1 yield; 33% conversion of bicarbonate) was obtained at about 0.7 atm of gas pressure. When the reaction was carried out in an ultrafiltration vessel with a hydrogen pressure of 3 atm, a final product concentration of 1.02 mol·l-1 (47 g·l-1 yield, 51% conversion) could be obtained, indicating that the hydrogen lyase system of this methanogen has a high tolerance to formic acid, bicarbonate and hydrogen. The results obtained in this work open a new perspective for the utilization of methanogens for processes other than methane production.  相似文献   

5.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

6.
Abstract The minimum threshold concentrations of acetate utilization and the enzymes responsible for acetate activation of several methanogenic bacteria were investigated and compared with literature data. The minimum acetate concentrations reached by hydrogenotrophic methane bacteria, which require acetate as carbon source, were between 0.4 and 0.6 mM. The acetoclastic Methanosarcina achieves acetate concentrations between 0.2 and 1.2 mM and Methanothrix between 7 and 70 μM. For the activation of acetate most of the hydrogenotrophic methane bacteria investigated use an acetyl-CoA synthetase with a relatively low K m (40–90 μM) for acetate. although the affinity for acetate was high, the hydrogenotrophic methane bacteria were not able to remove acetate to lower concentrations than the acetoclastic methane bacteria, neither in pure cultures nor in anaerobic granular sludge samples. Based on these observations, it is not likely that hydrogenotrophic methanogens compete strongly for acetate with the acetoclastic methane bacteria.  相似文献   

7.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

8.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

9.
Abstract The development of hydrogenotrophic bacteria in the rumen of lambs was investigated by culture and labeling experiments. 14CO2 and 13CO2 incorporation by the rumen microflora of a 24-h-old lamb showed that while there was no labeled methane, double-labeled acetate was formed indicating the presence of hydrogen-dependent acetogenesis. In vitro counts from rumen fluid of 20-h-old lambs confirmed an extensive colonization of acetogenic bacteria while methanogens were absent. Methanogens appeared in the rumen of 30-h-old lambs, and as they developed there was a proportional decrease in the numbers of acetogens, indicating a competition for hydrogen between these two groups. Hydrogen-utilizing sulfate-reducing bacteria, which were established by the 3rd day after birth, did not seem to be affected by this competition.  相似文献   

10.
The aim of this work was to determine the effect of yeast extract and of its vitamin contents on autotrophic and heterotrophic growth and metabolism of four acetogenic bacteria from the human colon. Yeast extract exerted a stimulatory effect on autotrophic growth of the colonic acetogens, but concentration of this compound above 1–2 g. L−1 in the medium did not enhance utilization of H2/CO2. Vitamins provided by yeast extract were shown to be essential cofactors of the reductive pathway of acetate synthesis except for one Clostridium strain. Yeast extract was also necessary to maintain heterotrophic growth and acetate synthesis from glucose in acetogenic species, except in the Streptococcus strain. In the absence of yeast extract, vitamins could efficiently restore glucose fermentation via acetate. The reductive and oxidative pathways of acetate synthesis might, therefore, depend on vitamin cofactors supplied by yeast extract in most of the human acetogenic bacteria. Non-vitaminic factors appeared also to be involved in the metabolism of some of these acetogenic species. Received: 6 March 1998 / Accepted: 3 April 1998  相似文献   

11.
Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not necessarily to the seasonal release of previously frozen organic carbon from thawing permafrost soils. However, as temperatures increase such inputs of carbon will likely have a greater influence on methane production and methanogen community structure. Understanding the action and limitations of anaerobic microorganisms within cold environments may provide information which can be used in defining region-specific differences in the microbial processes; which ultimately control methane flux to the atmosphere.  相似文献   

12.
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。  相似文献   

13.
Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens.  相似文献   

14.
Incandescent lamp illumination enhanced methane production from a thermophilic anaerobic digestion reactor (55°C) supplied with glucose. After 10 days of operation, the volume of methane produced from light reactors was approximately 2.5 times higher than that from dark reactors. A comparison of the carbon balance between light and dark conditions showed that methane produced from hydrogen and carbon dioxide in the light reactors was higher than that from the dark reactors. When hydrogen or acetate was fed into the reactors, methane production with added hydrogen was faster and higher under light conditions than under dark conditions. The use of blue light-emitting diodes also enhanced methane production over that under dark conditions. The 16S rRNA gene copy numbers for Methanothermobacter spp. in the light reactor and in the dark reactor were at the same level. The copy number for Methanosarcina spp. in the light reactors was approximately double than that in the dark reactors. These results suggest that blue light enhances the methanogenic activity of hydrogenotrophic methanogens.  相似文献   

15.
We previously described a thermophilic (60 degrees C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H(2) and CO(2). While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shaped bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When the axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH(4). The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H(2)-CO(2) as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H(2)-CO(2), demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H(2), was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.  相似文献   

16.
Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.Subject terms: Biogeochemistry, Biodiversity, Environmental microbiology  相似文献   

17.
Summary Organic waste is converted in a two-stage process to methane and carbon dioxide by mixed cultures of microorganisms. Acetate, a product of acidogenic and acetogenic bacteria and the main substrate for methanogenic bacteria, is an important intermediate of the anaerobic degradation process, which results in the generation of methane. It was shown by labelling experiments using (U-14C) acetate that as much as 65%–96% of the total methane produced came from the acetate. The first order utilization rate for acetate in the methanogenic stages of a two-stage digestion process was between 0.17 h-1 and 0.5 h-1. The kinetics as well as the mass flow and yields of acetate and the methyl group of acetate were determined by pulse-labelling experiments with (U-14C) acetate and (2-14C) acetate without a significant rise of the total concentrations. Up to 58% of the acetate carbon was transformed to methane, and about 30% to carbon dioxide; only 4%–15% was incorporated into the biomass. There are at least two parallel degradation mechanisms in the metabolic transformation of acetate to methane: acetate is cleaved either to form methane and carbon dioxide or to form hydrogen and carbon dioxide, which can be transformed by an additional reaction to methane. Labelling experiments with (2-14C) acetate show that both mechanisms took place at similar order.  相似文献   

18.
Two microorganisms originally existing as a mixed culture obtained from an anaerobic digester fluid were separated for pure and coculture studies. One of these was motile, Gram-negative, and non-sporeforming, and it required yeast extract for growth and acetic acid production. This isolate produced H2 and did not need H2 and (or) CO2 for growth and acetate formation. The other isolate was a methanogen whick resembled Methanobacterium arbophilicum in morphology and substrate specificity. Coculture growth of the two isolates in yeast extract broth (80% N2--20% CO2 gas phase) indicated that the non-methanogen produced up to four to five times more H2 than when grown separately. Although the growth of the non-methanogen was not enhanced by the removal of H2 by the methanogen, the hydrogen produced was essential for the growth of methanogen. Similar results were obtained when the non-methanogen was cocultured with Methanospirillum hungatti GP1. Cultivation of the non-methanogen in the presence of M. hungatti GP1 (under abundance of 80% H2--20% CO2) indicated that the acetate produced was consumed by M. hungatii, without inhibiting the growth of the other culture.  相似文献   

19.
A method is described for increasing the production of H2 from glucose or lactate by Selenomonas ruminantium by sequential transfers in media containing pregrown Methanobacterium ruminantium. The methanogen uses the H2 formed by the selenomonad to reduce CO2 to CH4. Analysis of fermentation products from glucose showed that lactate was the major product formed from glucose by S. ruminantium alone. Several sequential transfers in the presence of the methanogen caused a marked decrease in lactate production, which was accompanied by an increase in acetate. When lactate was the fermentation substrate, S. ruminantium alone produced propionate, acetate, and CO2. Addition to the pregrown methanogen in the sequential transfer procedure caused a significant decrease in the production of propionate and an increase in acetate formed from lactate. These results are interpreted in terms of the influence of H2 utilization by the methanogen on the production of H2 versus lactate or propionate from reduced pyridine nucleotides by S. ruminantium.  相似文献   

20.
A method is described for increasing the production of H2 from glucose or lactate by Selenomonas ruminantium by sequential transfers in media containing pregrown Methanobacterium ruminantium. The methanogen uses the H2 formed by the selenomonad to reduce CO2 to CH4. Analysis of fermentation products from glucose showed that lactate was the major product formed from glucose by S. ruminantium alone. Several sequential transfers in the presence of the methanogen caused a marked decrease in lactate production, which was accompanied by an increase in acetate. When lactate was the fermentation substrate, S. ruminantium alone produced propionate, acetate, and CO2. Addition to the pregrown methanogen in the sequential transfer procedure caused a significant decrease in the production of propionate and an increase in acetate formed from lactate. These results are interpreted in terms of the influence of H2 utilization by the methanogen on the production of H2 versus lactate or propionate from reduced pyridine nucleotides by S. ruminantium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号