首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction studies using central composite design (CCD) gave the optimum concentrations of acetate at 4 g l(-1) and (NH4)2SO4 at 0.01 g l(-1) with an optimum temperature of 35 degrees C. Rhodobacter sphaeroides N20 gave the highest PHB (7.8 g l(-1)) and biomass (DCW) (8.2 g l(-1)) values compared to the wild type strain and the mutant strain U7. The CCD results predicted that the optimum medium for the mutant strain N20 consisted of 3.90 g l(-1) acetate, 0.01 g l(-1) (NH4)2SO4 at 33.5 degrees C (R2=0.985). Validation of this model by culturing the mutant strain in this optimum medium exhibited similar values of PHB (7.76 g l(-1)), biomass (8.32 g l(-1)) and the PHB content in the cell 93.2% of DCW. Similar amounts of PHB were also obtained in batch fermentations using a 5-l bioreactor. The effect of pH and aeration rate was also studied and the optimum values were found to be pH 7.0 with an aeration rate of 1.0 vvm. Under these optimal conditions, strain N20 produced the highest amount of PHB production (8.76 g l(-1)), PHB content (95.4% of DCW) as well as the product yield (Yp/x) (0.72). These results are the highest values ever obtained from photosynthetic bacteria reported so far.  相似文献   

2.
《Process Biochemistry》1999,34(2):109-114
The effects of phosphate supply and aeration on cell growth and PHB accumulation were investigated in Azotobacter chroococcum 23 with the aim of increasing PHB production. Phosphate limitation favoured PHB formation in Azotobacter chroococcum 23, but inhibited growth. Azotobacter chroococcum 23 cells demonstrated intensive uptake of orthophosphate during exponential growth. At the highest phosphate concentration (1·5 g/litre) and low aeration the amount of intracellular orthophosphate/g residual biomass was highest. Under conditions of fed-batch fermentation the possibility of controlling the PHB production process by the phosphate level in the cultivation medium was demonstrated. A 36 h fed-batch fermentation resulted in a biomass yield of 110 g/litre with a PHB cellular concentration of 75% dry weight, PHB content 82·5 g/litre, PHB yield YP/S = 0·24 g/g and process productivity 2·29 g/litre·h.  相似文献   

3.
Comamonas testosteroni has been found to produce poly(-hydroxybutyrate) (PHB) during its growth on naphthalene. Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR) analysis confirmed it as a homopolymer of 3-hydroxybutyrate. Oxygen and essential nutrient limitation other than carbon source play a major role in maximum PHB production. Nitrogen limitation was found to have a profound effect, with 0.2 g ammonium nitrate/l optimum for PHB production. Both aeration and iron were found to be essential for growth and PHB accumulation. Ferric chloride at 0.04 g/l concentration was found to be optimum for PHB accumulation. Phosphate source variation showed no significant effect. Using naphthalene as a sole carbon source in optimized Bushnell Haas medium, 85% of the dry cell mass was extracted as chloroform-soluble PHB.  相似文献   

4.
Methylobacterium extorquens ATCC 55366 was successfully cultivated at very high cell densities in a fed-batch fermentation system using methanol as a sole carbon and energy source and a completely minimal culture medium for the production of poly--hydroxybutyrate (PHB). Cell biomass levels were between 100 g/l and 115 g/l (dry weight) and cells contained between 40% and 46% PHB on a dry-weight basis. PHB with higher molecular mass values than previously reported for methylotrophic bacteria was obtained under certain conditions. Shake-flask and fermentor experiments showed the importance of adjusting the mineral composition of the medium for improved biomass production and higher growth rates. High-cell-density cultures were obtained without the need for oxygen-enriched air; once the oxygen transfer capacity of the fermentor was reached, methanol was thereafter added in proportion to the amount of available dissolved oxygen, thus preventing oxygen limitation. Controlling the methanol concentration at a very low level (less than 0.01 g/l), during the PHB production phase, led not only to prevention of oxygen limitation but also to the production of very high-molecular-mass PHB, in the 900–1800 kDa range. Biomass yields relative to the total methanol consumed were in the range 0.29–0.33 g/g, whereas PHB yields were in the range 0.09–0.12 g/g. During the active period of PHB synthesis, PHB yields relative to the total methanol consumed were between 0.2 g/g and 0.22 g/g. M. extorquens ATCC 55366 appears to be a promising organism for industrial PHB production.  相似文献   

5.
Several recombinant Escherichia coli strains harboring the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes were used to produce poly(3-hydroxybutyrate), PHB, from xylose. By flask culture of TG1 (pSYL107) in a defined medium containing 20?g/l xylose, PHB concentration of 1.7?g/l was obtained. Supplementation of a small amount of cotton seed hydrolysate or soybean hydrolysate could enhance PHB production by more than two fold. The PHB concentration, PHB content, and PHB yield on xylose obtained by supplementing soybean hydrolysate were 4.4?g/l, 73.9%, and 0.226?g PHB/g xylose, respectively.  相似文献   

6.
F Wang  S Y Lee 《Applied microbiology》1997,63(12):4765-4769
Recombinant Escherichia coli XL1-Blue harboring a high-copy-number plasmid containing the Alcaligenes eutrophus polyhydroxyalkanoate synthesis genes could efficiently synthesize poly(3-hydroxybutyrate) (PHB) in a complex medium containing yeast extract and tryptone but not in a defined medium. One of the reasons for the reduced PHB production in a defined medium was thought to be severe filamentation of cells in this medium. By overexpressing an essential cell division protein, FtsZ, in recombinant E. coli producing PHB, filamentation could be suppressed and PHB could be efficiently produced in a defined medium. A high PHB concentration of 149 g/liter, with high productivity of 3.4 g of PHB/liter/h, could be obtained by the pH-stat fed-batch culture of the filamentation-suppressed recombinant E. coli in a defined medium. It was also found that insufficient oxygen supply at a dissolved oxygen concentration (DOC) of 1 to 3% of air saturation during active PHB synthesis phase did not negatively affect PHB production. By growing cells to the concentration of 110 g/liter and then controlling the DOC in the range of 1 to 3% of air saturation, a PHB concentration of 157 g/liter and PHB productivity of 3.2 g of PHB/liter/h were obtained. For the scale-up studies, fed-batch culture was carried out in a 50-liter stirred tank fermentor, in which the DOC decreased to zero when cell concentration reached 50 g/liter. However, a relatively high PHB concentration of 101 g/liter and PHB productivity of 2.8 g of PHB/liter/h could still be obtained, which demonstrated the possibility of industrial production of PHB in a defined medium by employing the filamentation-suppressed recombinant E. coli.  相似文献   

7.
Azotobacter vinelandii UWD was grown in a fermentor with glucose medium with and without 0.1% fish peptone (FP) in batch and fed-batch cultures for the production of the natural bioplastic poly-beta-hydroxybutyrate (PHB). Strain UWD formed PHB five times faster than cell protein during growth in glucose and NH(4), but PHB synthesis stopped when NH(4) was depleted and nitrogen fixation started. When FP was added to the same medium, PHB accumulated 16 times faster than cell protein, which in turn was inhibited by 40%, and PHB synthesis was unaffected by NH(4) depletion. Thus, FP appeared to be used as a nitrogen source by these nitrogen-fixing cells, which permitted enhanced PHB synthesis, but it was not a general growth stimulator. The addition of FP to the medium led to the production of large, pleomorphic, osmotically sensitive cells that demonstrated impaired growth and partial lysis, with the leakage of DNA into the culture fluid, but these cells were still able to synthesize PHB at elevated rates and efficiency. When FP was continuously present in fed-batch culture, the yield in grams of polymer per gram of glucose consumed was calculated to range from 0.43 g/g, characteristic of nongrowing cells, to an unprecedented 0.65 g/g. Separation of an FP-free growth phase from an FP-containing growth phase in fed-batch culture resulted in better growth of these pleomorphic cells and good production of PHB (yield, 0.32 g/g). The fragility of these cells was exploited in a simple procedure for the extraction of high-molecular-weight PHB. The cells were treated with 1 N aqueous NH(3) (pH 11.4) at 45 degrees C for 10 min. This treatment removed about 10% of the non-PHB mass from the pellet, of which 60 to 77% was protein. The final product consisted of 94% PHB, 2% protein, and 4% nonprotein residual mass. The polymer molecular weight (1.7 x 10 to 2.0 x 10) and dispersity (1.0 to 1.9) were not significantly affected (P = 0.05) by this treatment. In addition, the NH(3) extraction waste could be recycled in the fermentation as a nitrogen source, but it did not promote PHB production like FP. A scheme for improved downstream extraction of PHB as well as the merits of using pleomorphic cells in the production of bioplastics is discussed.  相似文献   

8.
A statistically based Plackett-Burman screening design identified milk whey and corn steep liquor concentrations as well as ionic strength (based on phosphate buffer concentration) as the three main independent components of the culture medium that significantly (p < 0.05) influenced biomass and poly(3-hydroxybutyrate) (PHB) production in recombinant cells of Escherichia coli. This strain carries a plasmid encoding phb genes from a natural isolate of Azotobacter sp. Response surface methodology, using a central composite rotatable design, demonstrated that the optimal concentrations of the three components, defined as those yielding maximal biomass and PHB production in shaken flasks, were 37.96 g deproteinated milk whey powder/l, 29.39 g corn steep liquor/l, and 23.76 g phosphates/l (r2 = 0.957). The model was validated by culturing the recombinant cells in medium containing these optimal concentrations, which yielded 9.41 g biomass/l and 6.12 g PHB/l in the culture broth. Similar amounts of PHB were obtained following batch fermentations in a bioreactor. These results show that PHB can be produced efficiently by culturing the recombinant strain in medium containing cheap carbon and nitrogen sources.  相似文献   

9.
The effects of different nitrogen and carbon sources on cell growth, pH, and exopolysaccharide (EPS) and poly-(beta)-hydroxybutyrate (PHB) production by two strains of Rhizobium meliloti (M5N1 and Su47) are reported. Differences in the behavior of glucose- and fructose-grown cells were shown, in particular with the M5N1 strain. Growth in a glucose-containing medium was accompanied by acidification of the culture medium, which leads to cell death. On fructose, acidification was detected only in the medium with a mineral nitrogen supply. A lag phase in EPS production was observed with cells grown with glucose, probably related to an initial extracellular conversion of the carbohydrate into an acid. No lag phase was observed in EPS production from fructose or in PHB synthesis whatever the carbon source. A decrease in PHB content was noticed for both strains under conditions where acidification of media occurred. The extent of production, emphasized by the use of a coproduction index, indicates that the M5N1 strain is a more promising organism than is the Su47 strain for polymer production. Such a strain, put in rich medium (containing yeast extract) supplemented with fructose, accumulated PHB up to 85% of dry cell weight and excreted about 1.5 g of EPS per liter in the medium. Regulation of the coproduction of EPS and PHB by these cells is suggested.  相似文献   

10.
Azotobacter vinelandii UWD was grown in a fermentor with glucose medium with and without 0.1% fish peptone (FP) in batch and fed-batch cultures for the production of the natural bioplastic poly-β-hydroxybutyrate (PHB). Strain UWD formed PHB five times faster than cell protein during growth in glucose and NH4+, but PHB synthesis stopped when NH4+ was depleted and nitrogen fixation started. When FP was added to the same medium, PHB accumulated 16 times faster than cell protein, which in turn was inhibited by 40%, and PHB synthesis was unaffected by NH4+ depletion. Thus, FP appeared to be used as a nitrogen source by these nitrogen-fixing cells, which permitted enhanced PHB synthesis, but it was not a general growth stimulator. The addition of FP to the medium led to the production of large, pleomorphic, osmotically sensitive cells that demonstrated impaired growth and partial lysis, with the leakage of DNA into the culture fluid, but these cells were still able to synthesize PHB at elevated rates and efficiency. When FP was continuously present in fed-batch culture, the yield in grams of polymer per gram of glucose consumed was calculated to range from 0.43 g/g, characteristic of nongrowing cells, to an unprecedented 0.65 g/g. Separation of an FP-free growth phase from an FP-containing growth phase in fed-batch culture resulted in better growth of these pleomorphic cells and good production of PHB (yield, 0.32 g/g). The fragility of these cells was exploited in a simple procedure for the extraction of high-molecular-weight PHB. The cells were treated with 1 N aqueous NH3 (pH 11.4) at 45°C for 10 min. This treatment removed about 10% of the non-PHB mass from the pellet, of which 60 to 77% was protein. The final product consisted of 94% PHB, 2% protein, and 4% nonprotein residual mass. The polymer molecular weight (1.7 × 106 to 2.0 × 106) and dispersity (1.0 to 1.9) were not significantly affected (P = 0.05) by this treatment. In addition, the NH3 extraction waste could be recycled in the fermentation as a nitrogen source, but it did not promote PHB production like FP. A scheme for improved downstream extraction of PHB as well as the merits of using pleomorphic cells in the production of bioplastics is discussed.  相似文献   

11.
It has been shown that poly-3-hydroxybutyrate (PHB) of predetermined molecular weight can be obtained by varying the growth conditions of the producer strain, Azotobacter chroococcum 7B: pH, temperature, aeration, presence of sodium acetate as an additional carbon source, or growth on crude complex carbon sources (molasses, vinasse, or starch). High-molecular-weight polymer can be obtained at pH 7.0, optimal for the culture (1485 kDa), temperature 30-37 degrees C (1600-1450 kDa, respectively), and low aeration (2215 kDa). The following factors decrease PHB MW: pH deviation to the acidic (pH 6.0, 476 kDa) or alkaline (pH 8.0, 354 kDa) range or lower temperature (20 degrees C, 897 kDa). Introduction of additional carbon source (sodium acetate) at concentrations in the medium varying from 0 to 5 g/l provides an original method of production of PHB with predetermined MW in a wide range, from 270 to 1515 kDa, with high PHB content in the cell.  相似文献   

12.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the 'one-factor-at-a-time' technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett-Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box-Wilson design. Under such optimized conditions (22.02 g l(-1) glycerol, 1.78 g l(-1) CAS, and 1.83 g l(-1) inoculum) microaerobic batch cultures gave rise to 8.37 g l(-1) CDW and 3.52 g l(-1) PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l(-1). After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l(-1), respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures.  相似文献   

13.
It has been shown that poly-3-hydroxybutyrate (PHB) of predetermined molecular weight can be obtained by varying the growth conditions of the producer strain, Azotobacter chroococcum 7B: pH, temperature, aeration, presence of sodium acetate as an additional carbon source, or growth on crude complex carbon sources (molasses, vinasse, or starch). High-molecular-weight polymer can be obtained at pH 7.0, optimal for the culture (1485 kDa), temperature 30–37°C (1600–1450 kDa, respectively), and low aeration (2215 kDa). The following factors decrease PHB MW: pH deviation to the acidic (pH 6.0, 476 kDa) or alkaline (pH 8.0, 354 kDa) range or lower temperature (20°C, 897 kDa). Introduction of additional carbon source (sodium acetate) at concentrations in the medium varying from 0 to 5 g/l provides an original method of production of PHB with predetermined MW in a wide range, from 270 to 1515 kDa, with high PHB content in the cell.  相似文献   

14.
Summary Fifty-one methylotrophs were checked with respect to their ability of poly--hydroxybutyric acid (PHB) production from methanol. One of them, Pseudomonas sp. K, was chosen from its good growth on a minimum synthetic medium. Optimal temperature and pH for its growth were 30° C and 7.0, respectively. Concentrations of PO 4 3- and NH 4 + in the medium should be kept at low levels. PHB formation was stimulated by deficiency of nutrient such as NH 4 + , SO 4 2- , Mg2+, Fe2+ or Mn2+. Among them, nitrogen deficiency was chosen from its effectiveness and easiness for PHB accumulation.The microorganism was cultivated to produce a large amount of poly--hydroxybutyric acid (PHB) from methanol by means of microcomputer-aided fully automatic fed-batch culture technique. During the cultivation, temperature, dissolved oxygen concentration (DO), and methanol concentration in the culture broth were maintained at 30° C 2.5±0.5 ppm and 0.5±0.2 g/l, respectively. Other nutrients, nitrogen source and mineral ions, were also controlled to maintain their initial concentrations in the medium during cell growth phase. When the high cell concentration was achieved (160 g/l), feedings of ammonia and minerals were stopped and only methanol was supplied successively to accumulate PHB. At 175 h, high concentration of PHB (136 g/l) was obtained and total cell concentration became 206 g/l. DO must be maintained above the critical level during the PHB formation phase, too. PHB yield from methanol (g PHB/g methanol) was 0.18 and the maximum PHB content reached 66% of dry weight. Solid PHB produced by the strain had the melting point of 176° C and the average molecular weight of 3.0x105.  相似文献   

15.
The physico-chemical factors influencing the production of poly(-hydroxybutyric acid) [PHB] and exopolysaccharide (EPS) by a yellow pigmented Azotobacter beijerinckii strain WDN-01 were investigated. Under N-free condition with excess carbon, PHB accumulation attained its maximum at the late exponential phase followed by a sharp decline while EPS production was more or less parallel with growth. Polymer synthesis, however, was carbon-source-specific, the highest yield of PHB (2.73 g/l) and EPS (1.5 g/l) was obtained with 3% (w/v) glucose and mannitol respectively. Organic N-sources enhanced PHB production significantly, but inorganic nitrogenous compounds were inhibitory to both PHB and EPS synthesis. At optimum K2HPO4 concentration, the polymer yield was attributed to biomass yield. Oxygen-limiting conditions, irrespective of carbon sources favoured production of PHB and EPS.  相似文献   

16.
Summary A kinetic study of the production of poly--hydroxybutyric acid (PHB) by a fed-batch culture of Protomonas extorquens showed that a nitrogen source was necessary even in the PHB production phase. The effect of ammonia feeding on PHB production was consequently investigated. The nitrogen source (ammonia water) was supplied at a low constant feeding rate after the growth phase in which cell mass concentration reached 60 g/l. Feeding with a small quantity of ammonia resulted in a more rapid increase in intracellular PHB content than was the case without ammonia feeding. Excessive feeding of ammonia, however, caused not only degradation of accumulated PHB but also reduction of microbial PHB synthetic activity.  相似文献   

17.
A strain of Bacillus sp. coded JMa5 was isolated from molasses contaminated soil. The strain was able to grow at a temperature as high as 45°C and in 250 g/l molasses although the optimal growth temperature was 35–37°C. Cell density reached 30 g/l 8 h after inoculation in a batch culture with an initial concentration of 210 g/l molasses. Under fed-batch conditions, the cells grew to a dry weight of 70 g/l after 30 h of fermentation. The strain accumulated 25–35%, (w/w) polyhydroxybutyrate (PHB) during fermentation. PHB accumulation was a growth-associated process. Factors that normally promote PHB production include high ratios of carbon to nitrogen, and carbon to phosphorus in growth media. Low dissolved oxygen supply resulted in sporulation, which reduced PHB contents and dry weights of the cells. It seems that sporulation induced by reduced supply of nutrients is the reason that PHB content is generally low in the Bacillus strain.  相似文献   

18.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)).  相似文献   

19.
The effect of aeration level and iron concentration on Azotobacter chroococcum 23 growth, PHB accumulation and antioxidative enzyme activities was investigated in shake flask experiments. Biomass yield and carbon source conversation coefficients increased in the presence of iron in the growth medium and under decreased aeration. The highest biomass production was observed for the culture grown in a medium with 36 μM of initial iron concentration and moderate aeration level. The highest PHB accumulation level (70–72% from cell dry weight) under our experimental conditions was observed at decreased aeration in the growth medium with 180 μM of initial iron concentration. Results obtained prove that both aeration level and iron supply have a marked influence on the activity of SOD and catalase. Bearing in mind the necessity of iron for the synthesis of both enzymes, only catalase showed a specific dependence on the intracellular iron accumulation level.  相似文献   

20.
Use of algae for intracellular poly-β-hydroxybutyrate (PHB) accumulation for bioplastic production offers an opportunity in economic efficiency by reduced costs. The cyanobacterium Nostoc muscorum is a PHB accumulator which presents a great potential as raw material supplier because of short generation cycles. Here, we examined a range of experimental conditions including different growth conditions of phosphate-starved cells with the addition of external carbon sources. The highest, absolute PHB accumulation was measured in a phosphate-starved medium with 1% (w/w) glucose and 1% (w/w) acetate. PHB accumulated inside algae cells. After 23 days of growth in phosphate-starved medium, 1 L of culture contained up to 145.1 mg PHB. The highest PHB accumulation based on the cell dry weight was in an experiment with aeration and CO2 addition. The intracellular level of PHB was up to 21.5% cell dry weight after 8 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号