首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea.  相似文献   

2.
Nonequilibrium statistical models of the active transport of ions in biomembranes have been constructed. Differences of chemical potentials of the ATP-ADP reaction and the electrochemical potential of ions were taken as the thermodynamic forces responsible for the flow of ions through the membrane. The active transport of ions was viewed as a cross phenomenon arising from the chemical reaction of the ATP hydrolysis. These models provide independent calculations of the resting potential at the biomembrane and concentrations of ions in a cell on the assumption the free energy of the ATP-ADP reaction is fully (without the dissipation loss) converted to the free energy of transported ions. They take into account the presence of nonpenetrating ions in a cell. It was shown that different concentrations of nonpenetrating ions have a considerable effect on the resting potential. The proposed models were compared with experimental data obtained for different types of cells including neurons, muscular cells, bacteria, plants, and mitochondria. Calculated values of the membrane potential and ion concentrations were in good qualitative agreement with experimental data.  相似文献   

3.
Requirements on models of the active transport of ions in biomembranes have been formulated. The basic requirements include an explicit dependence of the resting potential and intracellular concentrations of ions on the difference of ATP-ADP chemical potentials, a consideration of the reversibility of the ionic pump operation, a correlation between theoretical and experimental data on the resting potential and intracellular concentrations of ions for different types of cells, the pump efficiency approaching 100%, and a tendency of the resting potential to the Donnan potential if the active transport is blocked. A model satisfying the aforementioned requirements has been proposed by the authors as an example.  相似文献   

4.
A closed model of the active transport was constructed taking into account ATP-dependent opening and closing of barriers to ions and the relationship between the membrane potential and the work of ionic pumps under the condition of electroneutrality inside the cell. The internal consistency of the model was verified by the fulfillment of Onsager's reciprocity relation. It was demonstrated that at the limit of large energy barriers the operation of the system of the active transport is equivalent to the "turning segment" model, which was proposed by the authors earlier. Values of the resting potential and the intracellular concentration of ions were obtained for different types of cells. These results were in qualitative agreement with relevant experimental data.  相似文献   

5.
An analytical model, which describes the stationary transformation of light energy to the energy of pigment electronic excitation, has been constructed. A proton pump of the thylakoid membrane has been considered as a two-level conformon. The difference between the energies of the excited and ground states of both the pigment and the protein complex is assumed to be the energy of an absorbed photon. It has been found how the concentration of ions in a lumen and the potential across the thylakoid membrane depend on the concentration of ions in the stroma and the brightness temperature of absorbed radiation. Conditions for the maximum efficiency of the photosynthesis process have been analyzed. This model has been used to determine the electric potential (φ≈6.7 mV) at the chloroplast thylakoid membrane. The calculated value of the electric potential is in good agreement with the experimental data. A limitation on the stoichiometric coefficient of the proton transport through ATP-synthase, m>3, has been found theoretically.  相似文献   

6.
Models of active transport of neurotransmitters in synaptic vesicles   总被引:3,自引:0,他引:3  
Models of the active transport of neurotransmitters in synaptic vesicles were constructed. The models were used to determine the resting potential at membranes of synaptic vesicles: 40mV (monoamines and acetylcholine) and -40mV (glutamate). The potential at the membrane of a synaptic vesicle was almost absent for the transport of GABA and glycine. The neurotransmitter concentration of a cell was 0.1-18mM at the concentration of neurotransmitters in a vesicle equal to 0.5M. This result is in qualitative agreement with the relevant experimental data.  相似文献   

7.
大鼠烫伤早期(烫伤后30min),肝线粒体质子和电子传递速度均加快,线粒体能化态跨膜电位降低(均以琥珀酸为底物),线粒体膜脂流动性降低。皮下注射去甲肾上腺素后也有上述现象发生。推测急性应激通过儿茶酚胺类作用于肝细胞,导致线粒体内膜有序性增强所致。  相似文献   

8.
9.
Ouabain-sensitive Na+ and K+ fluxes and ATP content were determined in high potassium sheep erythrocytes at different values of membrane potential and internal pH. Membrane potential was adjusted by suspending erythrocytes in media containing different concentrations of MgCl2 and sucrose. Concomitantly either the external pH was changed sufficiently to maintain a constant internal pH or the external pH was kept constant with a resultant change of internal pH. The erythrocytes were preincubated before the flux experiment started in a medium which produced increased ATP content in order to avoid substrate limitation of the pump. p] It was found that an increased cellular pH reduced the rates of active transport of Na+ and K+ without significantly altering the ratio of pumped Na+K+. This reduction was not due to limitation in the supply of ATP although ATP content decreased when internal pH increased. Changes of membrane potential in the range between ?10 and +60 mV at constant internal pH did not affect the rates of active transport of Na+ or K+.  相似文献   

10.
Adenosine triphosphate production in mitochondria of bean hypocotyls and maize coleoptiles is inhibited by sulphite. Oxidized glutathione decreases the inhibition, probably by reducing the sulphite concentration in the reaction mixture.  相似文献   

11.
This study introduces a new class of active-site directed probes with respect to ADP and ATP transport catalysis in rat liver mitochondria. The anionic monoazo dyes, e.g., p-(2-hydroxy-1-naphthylazo)naphtholsulfonic acid, are competitive inhibitors of carrier-mediated ADP uptake (Ki 20–30 μM). The azo dyes also can displace the same amount of carrier-specific bound ADP as does carboxyatractyloside. Two essential substructures could be derived from a structure-activity study. Firstly, a sulfonic acid group in the para position relative to the azo bridge which becomes neutralized upon binding by a specifically located positive charge of the carrier protein. This electrostatic binding component, which presumably is represented by a strategic arginyl residue, seems to be essential for substrate binding as well as inhibitor binding. The second structural requirement for effective inhibition was found to be the o-hydroxy or o,o′-dihydroxyazo system, which is known to form stable complexes with metal ions by chelation. Experiments on prevention and reversal of dye-mediated inhibition revealed that the metal-chelating properties are responsible for the effects observed. In addition, using bovine serum albumin or the synthetic polymer Kollidone, inhibition could be prevented as well as abolished. It is postulated that a metal ion, possibly Mg2+, which is bound to the carrier protein plays an essential role for transport catalysis. The metal ion is assumed to form a functional ternary complex, i.e., a metal bridge complex between the carrier protein and its substrate.  相似文献   

12.
Abstract: Exposure of cultured cerebellar granule cells to 100 µ M glutamate plus glycine in the absence of Mg2+ causes calcium loading of the in situ mitochondria and is excitotoxic, as demonstrated by a collapse of the cellular ATP/ADP ratio, cytoplasmic Ca2+ deregulation (the failure of the cell to maintain a stable cytoplasmic free Ca2+ concentration), and extensive cell death. Glutamate-evoked Ca2+ deregulation is exacerbated by the mitochondrial respiratory chain inhibitor rotenone. Cells maintained by glycolytic ATP, i.e., in the presence of the mitochondrial ATP synthase inhibitor oligomycin, remain viable for several hours but are still susceptible to glutamate; thus, disruption of mitochondrial ATP synthesis is not a necessary step in glutamate excitotoxicity. In contrast, the combination of rotenone (or antimycin A) plus oligomycin, which collapses the mitochondrial membrane potential, therefore preventing mitochondrial Ca2+ transport, allows glutamate-exposed cells to maintain a high ATP/ADP ratio while accumulating little 45Ca2+ and maintaining a low bulk cytoplasmic free Ca2+ concentration determined by fura-2. It is concluded that mitochondrial Ca2+ accumulation is a necessary intermediate in glutamate excitotoxicity, whereas the decreased Ca2+ flux into cells with depolarized mitochondria may reflect a feedback inhibition of the NMDA receptor mediated by localized Ca2+ accumulation in a microdomain accessible to the mitochondria.  相似文献   

13.
The temperature sensitive release and uptake of ATP through theAspergillus niger G3Br membrane vesicles followed saturation kinetics. Both the processes which occurred in the absence of mycobacillin were greatly enhanced by its presence. Liposomes prepared with antifilipin sterol and lipid showed the release and uptake of ATP in the presence of filipin, but no such uptake and release was seen with antimycobacillin sterol and lipid in the presence of mycobacillin. However the liposomes supplemented withAspergillus niger membranes protein (s) showed the release and uptake of ATP, implicating membrane protein as a carrier in the transport process.  相似文献   

14.
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).  相似文献   

15.
Control of the coupled reaction sequence in active transport depends on systematic changes in the properties of the carrier protein as the reaction proceeds. These changes would have to be brought about by specific interactions with the substrate, the binding forces being used to stabilize either (i) a carrier state with altered properties or (ii) the transition state in a carrier transformation. In the first case the tightness of coupling (the ratio of the coupled rate to slippage) will at first rise with the increment in binding energy in the altered state but will approach an upper limit when overly strong binding forces retard substrate dissociation in a subsequent step in the coupled reaction sequence. Primary and secondary active transport are subject to this limitation because the coupling mechanism necessarily involves intermediates in which the substrate is strongly bound. Exchange-only transport is not necessarily subject to the same limitation because the mechanism can involve only a substrate-catalyzed change in carrier state. The available data, although scant, agree with these conclusions. Received: 3 June 1998/Revised: 22 September 1998  相似文献   

16.
In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+]cyt), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+]cyt signals that are triggered by ATP or by hair cell damage. ATP application (0.1–50 μM) caused a dose dependent increase in [Ca2+]cyt which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+]cyt transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+]cyt signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.  相似文献   

17.
A previous structure-activity investigation of acetylcholine (ACh) revealed a positive correlation between additional hydrophobic bulk and increased potency for inhibition of active transport of [3H]ACh by synaptic vesicles isolated from the electric organ of Torpedo. In the current study, several ACh analogues that are significantly larger than previously studied "false transmitters" were synthesized in the tritiated form by chemical means and tested for active transport. These are analogue 14 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-acetoxypyrrolidinium iodide], analogue 15 [(+/-)-1,1-dimethyl-3-benzoyloxypyrrolidinium iodide], and analogue 16/17 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-benzoyloxypyrrolidinium iodide]. These analogues place significant additional hydrophobic bulk on one or the other (analogues 14 and 15) or both (analogue 16/17) of the two pharmacophores of a small, conformationally constrained analogue of ACh. [3H]Analogue 14 and [3H]analogue 15 are actively transported, with Vmax values the same as or less than that of ACh, depending on the vesicle preparation. The observation that Vmax is the same for an analogue and ACh in some vesicle preparations suggests that the rate-limiting step does not involve ACh bound to the transporter. [3H]Analogue 16/17 is actively transported very poorly. Km values for ACh and for transported ACh analogues vary by up to two- to threefold in different vesicle preparations. The ACh transporter is much less selective for transported substrates than anticipated.  相似文献   

18.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator.  相似文献   

19.
Titov  I. I.  Schroeder  H.-K. 《Molecular Biology》2001,35(6):950-954
One of the main problems of metabolic engineering is to determine the genetically controlled limiting links of a metabolic network. We have built a model of the primary transport of inorganic phosphates (P i ), analyzed the P i metabolic network in Gram-negative bacteria, and determined the factors controlling the phosphate exchange. The model explains why the P i primary transport is not observed at the release stage. The nonlinearity of primary transport and the differences in its parameters in the membrane and within the cell give rise to transport asymmetry, i.e., the P i release rate is low as compared with the uptake rate, and is small at the background of secondary transport. Discussed is a general scheme of coordination between primary and secondary transport, which are interconnected through the substrate–product relation.  相似文献   

20.
ObjectiveStudy on the influence of the cerebral Ischemia-reperfusion Injury (IRI) on mitochondrial adenosine triphosphate (ATP) content and ATPase activity in hippocampus of rats, as well as the protective effect of propofol on IRI in rats.MethodsA total of 40 male SD rats were randomly divided into 5 groups: sham operation group (Group A), ischemia reperfusion control group (Group B) and ischemic reperfusion with propofol pretreatment group (C group). Group C was further divided into three sub groups according to the different doses of propofol: Group C1 (50 mg/kg), Group C2 (100 mg/kg) and Group C3 (150 mg/kg). The rats from Groups B and C were applied for the IRI model preparation by blockage of the blood flow in arteria carotis communis. For the Groups A, arteria carotis communis were separated without blockage of the blood flow. Before preparation of IRI model for rats in Group C, different doses of propofol were intraperitoneally injected into the rats. For rats in Groups A and B, only saline solution with same volume was intraperitoneally injected at the same time. The ultra-structures of mitochondria in hippocampus of rats were observed under transmission electron microscope, and the mitochondrial degeneration rate was counted. The contents of ATP were determined by HPLC and the ATPase activity was characterized by ATPase activity assay kit.Results(1) Mitochondria in the hippocampus from Groups B and C showed different degrees of ultrastructural damage and more significant mitochondrial degeneration than those from Group A. The degree of damage and the rate of degeneration were in the order of B > C1 > C2 > C3 and the difference was statistically significant (P < 0.01). (2) The contents of ATP and the ATPase activity in hippocampus from Groups B and C were significantly lower than those of Group A, while these indices from Group C were significantly higher than those in the B group, and the sequence was C3 > C2 > C1, indicating that the ATP content and ATPase activity were significantly correlated with the dose of propofol, and the difference was statistically significant (P < 0.05).ConclusionIn summary, the contents of ATP and ATPase activity in hippocampus of rats can be decreased by cerebral IRI. The structure and function of the impaired mitochondria in IRI rats could be significantly improved by propofol, and the improvement effect is related to the dose of propofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号