首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qiang Yang  Bo Li  Evan Siemann 《Oikos》2015,124(2):216-224
Exotic plant species may exhibit abiotic niche expansions that enable them to persist in a greater variety of habitat types in their introduced ranges than in their native ranges. This may reflect variation in limitation by different abiotic niche dimensions (realized niche shift) or phenotypic effects of biotic interactions that vary among ranges (realized niche expansion). Novel abiotic and biotic environments in the introduced range may also lead to genetic changes in exotic plant traits that enhance their abiotic stress tolerance (fundamental niche expansion). Here, we investigated how biotic interactions (aboveground herbivory and soil organisms) affect plant salinity tolerance using the invasive species Triadica sebifera from China (native range) and US (introduced range) populations grown in common gardens in both ranges. Simulated herbivory significantly reduced survival in saline treatments with reductions especially large at low salinity. Soil sterilization had a negative effect on survival at low salinity in China but had a positive effect on survival at low salinity in the US. Triadica survival and biomass were higher for US populations than for China populations, particularly in China but salinity tolerance did not depend on population origin. On average, arbuscular mycorrhizal (AM) colonization was higher for US populations, US soils and low salinity. These factors had a significant, positive, non‐additive interaction so that clipped seedlings from US populations in low saline US soils had high levels of AM colonization. Overall, our results show that phenotypic biotic interactions shape Triadica's salinity tolerance. Positive and negative biotic interactions together affected plant performance at intermediate stress levels. However, only aboveground damage consistently affected salinity tolerance, suggesting an important role for enemy release in expanding stress tolerance.  相似文献   

2.
A greenhouse experiment was carried-out to evaluate the effect of three rates of salinity as abiotic stress on okra plants (Abelmoschus esculentus) infected with the root-knot nematode (Meloidogyne incognita) as biotic stress. Plant lengths and weights were significantly (p?≤?0.05) reduced except root weight and there was a positive correlation between increasing the salinity concentration from 0.1 to 0.3% and increasing the rate of reduction in plant criteria. The number of J2 in soil, galls, and eggmasses were decreased linked to increased salinity rate as compared to nematode control treatment. However, peroxidase and catalase activities were significantly reduced linked to increasing the salinity concentration from 0.1 to 0.3%. There was no significant difference between total phenols at all treatments. Meanwhile, there was no significant improvement in N, P, and K contents whereas photosynthetic pigments (a, b) and carotene were significantly (p?≤?0.05) reduced by nematode infection and increasing the salinity rate from 0.1 to 0.3%.  相似文献   

3.
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems.  相似文献   

4.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

5.
The serpulid annelid Ficopomatus enigmaticus is a widely distributed invader of shallow‐water, brackish habitats in subtropical and temperate regions, where it has numerous damaging ecological and economic effects. Its distributional pattern suggests that temperature and salinity play important roles in limiting its distribution, but because other factors often covary with these, drawing strong conclusions from these patterns is difficult. In an effort to more clearly identify the effects of these factors, we examined tolerance to acute thermal (16–28°C) and salinity (0–35 psu) stress by larvae (5‐day exposure, unfed) and adults (14‐day exposure, unfed) of F. enigmaticus in the laboratory experiments. Larvae showed higher mortality at the highest temperature tested 28°C; adult survival was unaffected by temperature. Neither larvae nor adults survived exposure to pure freshwater (0 psu), but survived well at salinities ranging 3.5–35 psu. In addition, high salinity did not slow tube growth in adults. These results suggest that salinity stress, in particular, does not directly limit the distribution of F. enigmaticus to low‐salinity habitats. Experimental work on the distribution of F. enigmaticus is uncommon in the literature, but is likely needed to identify the abiotic or biotic factors that limit the distribution of this frequently invasive species.  相似文献   

6.
Fortnightly records of the biotic and abiotic conditions in a subtropical natural pond were made over a period of 14 months with a view to find out the abiotic causes of fluctuations in the zooplanktonic populations. Statistical analysis of simple correlations among the abiotic factors revealed direct relationships between water temperature, DO and pH and an inverse relationship between DO and -PO4 at statistically significant levels (P<0.01). The relationships between the physical and chemical factors and the zooplanktonic groups were evaluated by partial and multiple correlation coefficients. The causes for variation in the populations were established by stepwise multiple regression analysis. The populations of copepods and rotifers, respectively, were correlated at the 5 % and 1 % levels of significance to conductivity and -PO4 which might be indirectly affected by bicarbonates and phytoplankton growth. The occurrence of two peaks of zooplankton, one in winter and another in postsummer, were observed to follow the Microcystis aeruginosa bloom.  相似文献   

7.
To trace environmental changes in water hydrology and salinity in the Late Glacial to Holocene of the Gulf of Gdańsk, a south‐eastern bay of the Baltic Sea within the maritime zone of Poland, the distribution of ostracod valves was studied in 20 sediment cores collected from both the shallow‐ and deep‐water zones (depth 10.9–67.5 m). The studied sediment sequences yielded ca. 3000 valves of 21 ostracod species, of which only five are known to live today in the Gulf, which has a present maximum depth of 118 m and water salinity up to 7–8‰. The majority of the studied sediment layers that contained ostracod valves corresponded to the period of the Late Glacial to Mid‐Holocene and was dominated by non‐marine species, of which the most common were Candona neglecta (present in 17 cores), Cytherissa lacustris (15 cores) and Candona candida (14 cores). By clustering classification five major ostracod assemblage types were recognised in the studied cores. Initial assemblage types dominated mostly by inhabitants of the profundal/sub‐littoral zones of modern oligo‐mesotrophic lakes (C. lacustris and C. neglecta) in some sediment sequences were replaced in stratigraphical order by the assemblages dominated by brackish‐water species (Cyprideis torosa or Cytheromorpha fuscata). The structure and species composition of the distinguished ostracod assemblage types as well as their successional transitions indicate that the studied sediments were deposited initially in the Late Glacial in freshwater lacustrine conditions, and subsequently, during the Holocene marine transgression, covered by marine sands. The present results confirm and consolidate inferences based on previously published data on ostracods from the western part of the Gulf of Gdańsk as well as on other biotic (molluscs, diatoms) and abiotic (seismoacoustic) indices from this area (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
As one of the largest gene families in plants, the cytochrome P450 monooxygenase genes (CYPs) are involved in diverse biological processes including biotic and abiotic stress response. Moreover, P450 genes are prone to expanding due to gene tandem duplication during evolution, resulting in generations of novel alleles with the neo‐function or enhanced function. Here, the bread wheat (Triticum aestivum) gene TaCYP81D5 was found to lie within a cluster of five tandemly arranged CYP81D genes, although only a single such gene (BdCYP81D1) was present in the equivalent genomic region of the wheat relative Brachypodium distachyon. The imposition of salinity stress could up‐regulate TaCYP81D5, but the effect was abolished in plants treated with an inhibitor of reactive oxygen species synthesis. In SR3, a wheat cultivar with an elevated ROS content, the higher expression and the rapider response to salinity of TaCYP81D5 were related to the chromatin modification. Constitutively expressing TaCYP81D5 enhanced the salinity tolerance both at seedling and reproductive stages of wheat via accelerating ROS scavenging. Moreover, an important component of ROS signal transduction, Zat12, was proven crucial in this process. Though knockout of solely TaCYP81D5 showed no effect on salinity tolerance, knockdown of BdCYP81D1 or all TaCYP81D members in the cluster caused the sensitivity to salt stress. Our results provide the direct evidence that TaCYP81D5 confers salinity tolerance in bread wheat and this gene is prospective for crop improvement.  相似文献   

9.
1. An observed community structure is often shaped by a combination of bottom-top and top-bottom processes, affected by biotic and abiotic factors. These factors affect community structure either directly (each species separately) or indirectly, via other species. Few studies have observed the combined effects of biotic and abiotic factors on primary producers and consumer communities composed of numerous species. 2. This study investigated the combined effects of a predatory hemipteran and water salinity on abundance and species richness of the periphyton and arthropod communities in an artificial pool experiment. 3. The abundance and species richness of both periphyton and arthropod communities were affected by the combination of salinity and predator. 4. It is suggested that the observed consumer community is composed of arthropod species that vary in salinity tolerance and response to the predator. In addition, the abundance of euryhaline species or species that are not consumed by this particular predator increases indirectly in specific treatment combinations that eventually result in reduced interspecific competition. Periphyton variables were strongly correlated to densities of larval Ochlerotatus caspius (Diptera: Culicidae), suggesting that this species may be largely responsible for structuring the producer community. 5. It is suggested that O. caspius distribution is the result of female oviposition habitat selection that is manipulated by chemical signals. Therefore, chemical signals that inform about habitat suitability also play an important role in shaping both consumer and primary producer communities.  相似文献   

10.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

11.
Gobies that are phylogenetically related or coexist in the same marine and estuarine systems often exhibit abiotic and/or biotic habitat segregation. Thus, it is possible that species of Gymnogobius inhabiting the same riverine estuaries also exhibit abiotic and/or biotic habitat segregation. The goal of this study was to determine the differences in abiotic and biotic habitat use between these species by sampling goby and host shrimps, and by examining the physical environments of the rivers where these species are found. The surveys of goby and host shrimps were conducted in the estuaries of the Saba and Ibo rivers, which drain into the Seto Inland Sea, a body of water that separates three of the four main islands of Japan. We used hand nets and shovels to collect goby and host shrimps, and measured median sediment particle size, elevation, and salinity at each site. Generalized linear models (GLMs) were used to assess the preferences in abiotic and biotic habitat use by the goby species. Median particle size, salinity, and elevation were used as the abiotic environmental predictors, whereas the presence/absence of host shrimps were re-organized into four categories consisting of “Upogebia major” only, “Nihonotrypaea japonica” only, “Upogebia major & Nihonotrypaea japonica,” and “Upogebia yokoyai,” which were used as the biotic environmental predictors. The GLMs demonstrated that median particle size had the largest influence of the abiotic variables, with goby species segregating according to differences in sediments; moreover, there was some evidence suggesting that the host and symbiont do not always correlate at the species level. Our results indicated that although there is some overlap in abiotic and biotic habitat use among the four species of Gymnogobius, the differences were broad enough to provide an explanatory mechanism as to how these species can coexist in the same river systems.  相似文献   

12.
Factors affecting the distribution of juvenile estuarine and inshore fish   总被引:20,自引:0,他引:20  
The differential distributions of juveniles and adults of 25 species of teleost were investigated and compared from four habitat types in sub-tropical Moreton Bay, Queensland. The aim of the study was to identify factors influencing the distribution of juveniles, particularly the species which enter estuaries. The following habitats were sampled: a shallow, sheltered tidal estuary (Caboolture); a shallow, exposed bay with muddy substrates (Deception Bay); an exposed area of sandy substrates and seagrass (Toorbol Point) and a sheltered oceanic site with sandy substrates and seagrass (Kooringal). Data on diet, spawning seasons and recruitment periods of fry are presented together with measurements of salinity, temperature and turbidity. Species entering estuaries recruited mainly in summer (rainy season). The possible preference of juveniles for calm water, the roles of food and predation pressure, the effects of salinity, temperature and turbidity are discussed in relation to the biology and distribution of the fish. Salinity and temperature were probably not important to most juvenile fish. The effects of calm water, suitable food and predators vary according to species. Although all juveniles studied preferred shallow water, in the case of those entering estuaries, turbidity was the single most important factor. Juveniles of the same species occurred in both the estuary and Deception Bay where abiotic and biotic factors other than turbidity were different. During summer, turbidity gradients extended from east to west in Moreton Bay with highest turbidities in Caboolture estuary and Deception Bay. In winter, turbidities throughout Moreton Bay were low and relatively uniform. At this time many of the ‘clear water’ species occurred in Deception Bay. The influence of high turbidity on fish may be linked to reduced predation pressure and perhaps food supply in shallow water. Turbidity gradients in summer may aid fry in locating estuarine nursery grounds. It is apparent however, that juveniles of many species are probably not attracted to estuaries per se but to shallow turbid areas.  相似文献   

13.
Kudzu (Pueraria thunbergiana) plant extract impregnated sediments were used for abiotic and biotic uptakes and biodegradation. The optimized conditions were 25 μg L?1 concentration, 7 days for abiotic uptake and 56 days for biotic uptake and biodegradation, dose 2 g L?1, 7 pH, and 35°C temperature. The amount removed of dufulin was 32.6% in abiotic conditions while these were 90% in the case of biotic uptake and biodegradation. Enantioselective biodegradation indicated that S‐(+)‐enantiomer degraded faster (90%) than R‐(?)‐enantiomer (87%). The data for abiotic and biotic uptakes and biodegradation followed well Langmuir, thermodynamics, and kinetics models. All these processes followed pseudo first‐order kinetics. It was observed that biodegradation was three times responsible for dufulin removal than simple sorption uptake (abiotic and biotic). The abiotic and biotic uptakes and biodegradation were quite fast and endothermic nature. The developed method may be used to remove the racemic and enantiomeric dufulin in water.  相似文献   

14.
In calanoid copepods it is poorly understood how enzymatic activities and patterns are affected by abiotic and biotic factors. Such knowledge, however, is crucial to assess metabolic functioning and performance of organisms in different habitats. Therefore, our study focuses on digestive enzyme activities in relation to temperature, pH and food in the Arctic species Calanus glacialis and in Centropages hamatus and Temora longicornis from the North Sea. Enzyme activities were measured over a range from 0 to 70 °C (lipases/esterases, proteinases) and pH 5 to 9 (proteinases). In all species, relative proteinases activity peaked at 40/50 °C and pH 6; relative lipases/esterases activity peaked at 30 °C. Between 0 and 20 °C, lipase activity of C. glacialis was higher (40-70% of maximum) than that of the boreal copepods (25-64%), which suggests thermal adaptation of the lipid metabolism in the polar species. Incubating C. glacialis with the diatom Thalassiosira weissflogii showed (i) that enzyme activities increased especially in the alkaline range and (ii) that enzyme patterns, revealed by gel electrophoresis, differed from that of starving individuals, indicating that feeding induced enzyme expression. Such studies, linking abiotic and biotic conditions to enzyme functioning, can help elucidating the capacity of copepods to respond to environmental changes.  相似文献   

15.
The distribution and abundance of marine organisms are directly or indirectly a function of biotic and abiotic features such as sediment and water properties. In this study we analyzed the spatial and temporal distribution of Callinectes danae in two distinct littoral areas of the northern coast of the State of São Paulo, Brazil and associated them with local geomorphologic features and environmental factors. We collected specimens on a monthly basis, from July 2001 to June 2003, using a fishing boat equipped with double-rig net, in two locations: Ubatuba (UBA) and Caraguatatuba (CAR). Collecting was carried out in seven transects with different depths, which were further subdivided into two regions: bay region (5, 10, 15 and 20 m deep); and inner shelf region (25, 30 and 35 m deep). Samples from different periods and transects differed significantly in abundance. A positive correlation was found between the abundance of C. danae and the following parameters: temperature at the bottom, organic matter content and Phi (grain diameter). By contrast, a negative correlation was established between specimen abundance and salinity at the bottom. The total abundance was highest in 5 m deep transects in both regions. Summer was the season when individuals were least abundant in both areas. We concluded that the spatial and temporal distribution of C. danae are determined by a set of environmental factors and not just by one single factor.  相似文献   

16.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   

17.
Synopsis In a high salinity estuary at North Inlet, South Carolina, co-occurrence and possible competition among adults of four dominant zooplanktivorous fishes were minimized by seasonal adjustments in lateral and vertical distributions as well as in dietary preferences. In winter, Atlantic silversides, Menidia menidia, occupied the entire water column while other planktivores were rare or absent from the estuary, and they consumed large prey such as mysid shrimps and fish larvae. An immigration of bay anchovies, Anchoa mitchilli, in the spring resulted in a redistribution of species with Atlantic silversides shifting to the surface waters and bay anchovies dominating the lower half of the water column. Both fishes consumed mostly copepods in the spring, but each favored a different species. There was little similarity in the large prey items consumed by the two fishes. Striped anchovies, Anchoa hepsetus, arrived in mid-summer and were most abundant at the surface while bay anchovies continued to dominate the bottom waters. Atlantic silversides were rare in all summer collections. The diets of the two anchovies were similar, but vertical separation during the period of maximum zooplankton abundance probably minimized competition. Rough silversides, Membras martinica, which were obligate surface dwellers, shared the upper water column with striped anchovies, but the two species had very different diets during their period of co-occurrence. Although seasonal changes in fish diets reflected shifts in zooplankton composition and all fishes consumed a variety of prey types, preferences for some prey taxa and total avoidance of others were indicated. Electivity indices indicated an especially strong selection for fiddler crab megalopae by all fishes in the summer and fall. All fishes, except rough silversides, which fed almost exclusively on copepods and crab zoeae, consumed large prey items when they were available. Fine scale partitioning of the food resources was apparent in the selection of different copepod and insect species by the fishes. Spatial and temporal separation in the distribution and/or dietary preferences of the zooplanktivores fishes probably reduces the potential for resource competition. Given the high abundances and selectivity of the planktivores, significant impacts on some zooplankton populations probably result.  相似文献   

18.
The relative importance of abiotic factors in community assembly is debated and thought to be dependent on the scale. I investigated the relative role of topography and soils as structuring agents at the landscape and the community scales in 126 subalpine calcareous grasslands in the Pyrenees, in terms of species composition and abundance. I wished to know: (1) the role of abiotic factors in the organization of plant communities across the landscape; (2) how much of the variation in community distribution was accounted for by abiotic factors; and (3) how well their role applied to the distribution of dominant species at the landscape and the community scales. The hypothesis was: abiotic factors play an important role in community distribution in the landscape, but species interactions are more important within communities. Multivariate methods generated four communities, organized in two contrasting groups along the main vegetation axis, which explained 13% of the variation: mesic grasslands (Nardus stricta and Festuca nigrescens communities) and xeric grasslands (Carex humilis and Festuca gautieri communities). Mesic communities were more acidic and fertile than xeric communities. Changes in the abiotic environment, accounting for up to 80% of the variation in the vegetation, were smooth, while the transition between xeric and mesic grasslands was sharp in terms of species composition. The distribution in the landscape of the first main species from each community was closely related to abiotic factors, which modeled poorly the abundance of the main species at smaller scales. At the within-community scale, the explanatory power of biotic relationships was community dependent, producing the most significant models for plants highly dominant within their communities, such as N. stricta and F. gautieri. Contrary to current hypothesis, there was a shift from mainly positive relationships among dominant species in fertile mesic communities to mainly negative in infertile xeric ones.  相似文献   

19.
J. K. Bush 《Plant Ecology》2006,183(2):215-225
This study evaluated the relationships among soil moisture, soil salinity, and soil oxygen on the growth of Helianthus paradoxus (Asteraceae), a threatened inland salt marsh species of western North America. The study was conducted in large growth boxes (1×2×0.3 m) tilted at an angle to achieve a saturated to dry water gradient similar to that found in the marsh. This experimental design allowed the evaluation of major abiotic factors (soil moisture and soil salinity) which have been shown to be potentially important for this species, while removing major biotic factors, such as competition from other community dominants. Maximum aboveground biomass occurred in the middle rows of the boxes, where surface soil water was reduced and subsurface soil water was intermediate in the gradient. Regression analyses indicated that H. paradoxus would grow best where surface soil water is approximately 5%, subsurface soil water ranges from 20 to 30%, and where surface soil salinity is less than 0.5 g kg−1. Edaphic variables, particularly soil moisture and soil salinity, affect the growth of H. paradoxus. Data presented here suggest that the survival of this species depends on maintenance of the hydrologic regime.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号