首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modulation of mitochondrial function by hydrogen peroxide   总被引:16,自引:0,他引:16  
During normal cellular metabolism, mitochondrial electron transport results in the formation of superoxide anion (O(2)) and subsequently hydrogen peroxide (H(2)O(2)). Because H(2)O(2) increases in concentration under certain physiologic and pathophysiologic conditions and can oxidatively modify cellular components, it is critical to understand the response of mitochondria to H(2)O(2). In the present study, treatment of isolated rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery of state 3 NADH-linked respiration. Alterations in NADH levels induced by H(2)O(2) closely paralleled changes in the rate of state 3 respiration. Assessment of electron transport chain complexes and Krebs cycle enzymes revealed that alpha-ketoglutarate dehydrogenase (KGDH), succinate dehydrogenase (SDH), and aconitase were susceptible to H(2)O(2) inactivation. Of particular importance, KGDH and SDH activity returned to control levels, concurrent with the recovery of state 3 respiration. Inactivation is not because of direct interaction of H(2)O(2) with KGDH and SDH. In addition, removal of H(2)O(2) alone is not sufficient for reactivation. Enzyme activity does not recover unless mitochondria remain intact. The sensitivity of KGDH and SDH to H(2)O(2)-mediated inactivation and the reversible nature of inactivation suggest a potential role for H(2)O(2) in the regulation of KGDH and SDH.  相似文献   

2.
α-Ketoglutarate dehydrogenase (KGDH), a key regulatory enzyme within the Krebs cycle, is sensitive to mitochondrial redox status. Treatment of mitochondria with H?O? results in reversible inhibition of KGDH due to glutathionylation of the cofactor, lipoic acid. Upon consumption of H?O?, glutathione is removed by glutaredoxin restoring KGDH activity. Glutathionylation appears to be enzymatically catalysed or require a unique microenvironment. This may represent an antioxidant response, diminishing the flow of electrons to the respiratory chain and protecting sulphydryl residues from oxidative damage. KGDH is, however, also susceptible to oxidative damage. 4-Hydroxy-2-nonenal (HNE), a lipid peroxidation product, reacts with lipoic acid resulting in enzyme inactivation. Evidence indicates that HNE modified lipoic acid is cleaved from KGDH, potentially the first step of a repair process. KGDH is therefore a likely redox sensor, reversibly altering metabolism to reduce oxidative damage and, under severe oxidative stress, acting as a sentinel of mitochondrial viability.  相似文献   

3.
Recently, we demonstrated that the control of mitochondrial redox balance and oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm). Because cysteine residue(s) in IDPm are susceptible to inactivation by a number of thiol-modifying reagents, we hypothesized that IDPm is likely a target for regulation by an oxidative mechanism, specifically glutathionylation. Oxidized glutathione led to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the cysteine residue(s) in IDPm, which was detected by immunoblotting with anti-GSH IgG. The inactivated IDPm was reactivated enzymatically by glutaredoxin2 in the presence of GSH, indicating that the inactivated form of IDPm is a glutathionyl mixed disulfide. Mass spectrometry and site-directed mutagenesis further confirmed that glutathionylation occurs to a Cys(269) of IDPm. The glutathionylated IDPm appeared to be significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion, suggesting that glutathionylation plays a protective role presumably through the structural alterations. HEK293 cells and intact respiring mitochondria treated with oxidants inducing GSH oxidation such as H(2)O(2) or diamide showed a decrease in IDPm activity and the accumulation of glutathionylated enzyme. Using immunoprecipitation with anti-IDPm IgG and immunoblotting with anti-GSH IgG, we were also able to purify and positively identify glutathionylated IDPm from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model for Parkinson's disease. The results of the current study indicate that IDPm activity appears to be modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.  相似文献   

4.
Poly(ADP-ribose) polymerase (PARP) is an intracellular enzyme involved in DNA repair and in building poly-ADP-ribose polymers on nuclear proteins using NAD+. While the majority of PARP resides in the nucleus, several studies indicated that PARP may also be located in the cytosol or in the mitochondrial matrix. In this study we found several poly-ADP-ribosylated proteins in isolated rat liver mitochondria following hydrogen peroxide (H2O2) or nitric oxide donor treatment. Protein poly-ADP-ribosylation was more intense in isolated mitochondria than in whole tissue homogenates and it was not associated with increased nuclear PARP activity. We identified five poly-ADP-ribose (PAR) positive mitochondrial bands by protein mass fingerprinting. All of the identified enzymes exhibited decreased activity or decreased levels following oxidative or nitrosative stress. One of the identified proteins is dihydrolipoamide dehydrogenase (DLDH), a component of the alpha-ketoglutarate dehydrogenase (KGDH) complex, which uses NAD+ as a substrate. This raised the possibility that KGDH may have a PARP-like enzymatic activity. The intrinsic PARP activity of KGDH and DLDH was confirmed using a colorimetric PARP assay kit and by the incubation of the recombinant enzymes with H2O2. The KGDH enzyme may, therefore, have a novel function as a PARP-like enzyme, which may play a role in regulating intramitochondrial NAD+ and poly(ADP-ribose) homeostasis, with possible roles in physiology and pathophysiology.  相似文献   

5.
The products of the reactions of mitochondrial 2-oxo acids with hydrogen peroxide and tert-butyl hydroperoxide (tert-BuOOH) were studied in a chemical system and in rat liver mitochondria. It was found by HPLC that the decarboxylation of alpha-ketoglutarate (KGL), pyruvate (PYR), and oxaloacetate (OA) by both oxidants results in the formation of succinate, acetate, and malonate, respectively. The two latter products do not metabolize in rat liver mitochondria, whereas succinate is actively oxidized, and its nonenzymatic formation from KGL may shunt the tricarboxylic acid (TCA) cycle upon inactivation of alpha-ketoglutarate dehydrogenase (KGDH) under oxidative stress, which is inherent in many diseases and aging. The occurrence of nonenzymatic oxidation of KGL in mitochondria was established by an increase in the CO(2) and succinate levels in the presence of the oxidants and inhibitors of enzymatic oxidation. H(2)O(2) and menadione as an inductor of reactive oxygen species (ROS) caused the formation of CO(2) in the presence of sodium azide and the production of succinate, fumarate, and malate in the presence of rotenone. These substrates were also formed from KGL when mitochondria were incubated with tert-BuOOH at concentrations that completely inhibit KGDH. The nonenzymatic oxidation of KGL can support the TCA cycle under oxidative stress, provided that KGL is supplied via transamination. This is supported by the finding that the strong oxidant such as tert-BuOOH did not impair respiration and its sensitivity to the transaminase inhibitor aminooxyacetate when glutamate and malate were used as substrates. The appearance of two products, KGL and fumarate, also favors the involvement of transamination. Thus, upon oxidative stress, nonenzymatic decarboxylation of KGL and transamination switch the TCA cycle to the formation and oxidation of succinate.  相似文献   

6.
Partial purification and in vitro inactivation of glucose-6-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae in the Fe2+/H2O2 oxidation system were conducted. At the protein concentration 1.5 mg/ml, the enzyme lost 50% of activity within 5 minutes of incubation in presence of 2 mM hydrogen peroxide and 3 mM ferrous sulphate. The inactivation extent depended on time and concentrations of FeSO4 and H2O2. EDTA, ADP and ATP at concentration 0.5 mM enhanced inactivation. At the same time, the presence of 0.5 mM NADPH, 1 mM glucose-6-phosphate, 10 mM mannitol, 30 mM dimethylsulphoxide or 20 mM urea diminished this process. In comparison with native enzyme, index S(0,5) of the partially inactivated enzyme for glucose-6-phosphate was 2.1-fold higher, but for NADP it was 1,6-fold lower. Maximal activity of the partially inactivated enzyme was 3-5-fold lower than that of native one.  相似文献   

7.
Ubiquinol-1 in aerated aqueous solution inactivates several enzymes--alanine aminotransferase, alkaline phosphatase, Na+/K(+)-ATPase, creatine kinase and glutamine synthetase--but not isocitrate dehydrogenase and malate dehydrogenase. Ubiquinone-1 and/or H2O2 do not affect the activity of alkaline phosphatase and glutamine synthetase chosen as model enzymes. Dioxygen and transition metal ions, even if in trace amounts, are essential for the enzyme inactivation, which indeed does not occur under argon atmosphere or in the presence of metal chelators. Supplementation with redox-active metal ions (Fe3+ or Cu2+), moreover, potentiates alkaline phosphatase inactivation. Since catalase and peroxidase protect while superoxide dismutase does not, hydrogen peroxide rather than superoxide anion seems to be involved in the inactivation mechanism through which oxygen active species (hydroxyl radical or any other equivalent species) are produced via a modified Haber-Weiss cycle, triggered by metal-catalyzed oxidation of ubiquinol-1. The lack of efficiency of radical scavengers and the almost complete protection afforded by enzyme substrates and metal cofactors indicate a 'site-specific' radical attack as responsible for the oxidative damage.  相似文献   

8.
O2-inactivation of pyruvate:NADP+ oxidoreductase from mitochondria of Euglena gracilis was studied in vitro, and a mechanism which consists of two sequential stages was proposed. Initially, the enzyme is inactivated by the direct action of O2 in a process obeying second-order kinetics. Although the catalytic activity for pyruvate oxidation is lost by this initial inactivation, NADPH oxidation with artificial electron acceptors still occurs. Subsequently, a secondary, O2-independent inactivation occurs, rendering the enzyme completely inactive. Pyruvate stimulates the O2-inactivation while CoA and NADP+ protect the enzyme from O2. The O2-inactivation is accelerated by reduction of the enzyme with pyruvate and CoA. Reactivation of the O2-inactivated enzyme was studied in Ar by incubation with Fe2+ in the presence of some other reducing reagent such as dithiothreitol. The evidence obtained indicates that the partially inactivated enzyme, which retains catalytic activity for NADPH oxidation, can be reactivated, but the completely inactivated enzyme is not. When Euglena cells were exposed to 100% O2 the enzyme in the cells was inactivated by O2, but the rate was quite slow compared with that observed in vitro. The enzyme inactivated by O2 in the cells was almost completely reactivated in vitro by incubation with Fe2+ and other reducing reagents in Ar, suggesting that the secondary, O2-independent inactivation does not occur in situ. When the cells were returned to air, reactivation of the O2-inactivated enzyme in the cells began immediately. The enzyme, kept in isolated, intact mitochondria, was stable in air; however, the enzyme was inactivated by O2 when the mitochondria were incubated with a high concentration of pyruvate.  相似文献   

9.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria.The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25°C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation.The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32°C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid.The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

10.
Mitochondria from brown adipose tissue (BATM) have a high enzymatic capacity for fatty acid oxidation and therefore are an ideal model to examine the sites of reactive oxygen species (ROS) generation during fatty acid oxidation. ROS generation by BATM (isolated from 3-week-old rats) was measured during acylcarnitine oxidation as release of H(2)O(2) into the medium and as inactivation of the matrix enzyme aconitase. The following results were obtained: (1) BATM release large amounts of H(2)O(2) in the coupled as well as in the uncoupled states, several times more than skeletal muscle mitochondria. (2) H(2)O(2) release is especially large with acylcarnitines of medium-chain fatty acids (e.g. octanoylcarnitine). (3) Reverse electron transport does not contribute in a significant extent to the overall ROS generation. (4) Despite the large release of H(2)O(2), the ROS-sensitive matrix enzyme aconitase is not inactivated during acylcarnitine oxidation. (5) In contrast to acylcarnitines, oxidation of α-glycerophosphate by BATM is characterized by large H(2)O(2) release and a pronounced aconitase inactivation. We hypothesize that acylcarnitine-supported ROS generation in BATM may be mainly associated with acyl-CoA dehydrogenase and electron transferring flavoprotein-ubiquinone reductase rather than with complexes of the respiratory chain.  相似文献   

11.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria. The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25 degrees C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation. The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32 degrees C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid. The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

12.
Age-related increases in brain monoamine oxidase B (MAO-B) and its ability to produce reactive oxygen species as a by-product of catalysis could contribute to neurodegeneration associated with Parkinson's disease. This may be via increased oxidative stress and/or mitochondrial dysfunction either on its own or through its interaction with endogenous or exogenous neurotoxic species. We have created genetically engineered dopaminergic PC12 cell lines with subtly increased levels of MAO-B mimicking those observed during normal aging. In our cells, increased MAO-B activity was found to result in increased H2O2 production. This was found to correlate with a decrease in mitochondrial complex I activity which may involve both direct oxidative damage to the complex itself as well as oxidative effects on the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) which provides substrate for the complex. Both complex I and KGDH activities have been reported to be decreased in the Parkinsonian brain. These in vitro events are reversible by catalase addition. Importantly, MAO-B elevation was found to abolish the spare KGDH threshold capacity, which can normally be significantly inhibited before it affects maximal mitochondrial oxygen consumption rates. Our data suggest that H2O2 production via subtle elevations in MAO-B levels can result in oxidative effects on KGDH that can compromise the ability of dopaminergic neurons to cope with increased energetic stress.  相似文献   

13.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

14.
Phenothiazine cation radicals (PTZ + •) irreversibly inactivated Trypanosoma cruzi dihydrolipoamide dehydrogenase (LADH). These radicals were obtained by phenothiazine (PTZ) peroxidation with myeloperoxidase (MPO) or horseradish peroxidase (HRP/H 2 O 2 ) systems. LADH inactivation depended on PTZ structure and incubation time. After 10 min incubation of LADH with the MPO-dependent systems, promazine, trimeprazine and thioridazine were the most effective; after 30 min incubation, chlorpromazine, prochlorperazine and promethazine were similarly effective. HRP-dependent systems were equally or more effective than the corresponding MPO-dependent ones. Chloro, trifluoro, propionyl and nitrile groups at position 2 of the PTZ ring significantly decreased molecular activity, specially with the MPO/H 2 O 2 systems. Comparison of inactivation values for LADH and T. cruzi trypanothione reductase demonstrated a greater sensitivity of LADH to chlorpromazine and perphenazine and a 10-fold lower sensitivity to promazine, thioridazine and trimeprazine. Alkyl-amino, alkyl-piperidinyl or alkyl-piperazinyl groups at position 10 modulated PTZ activity to a limited degree. Production of PTZ + • radicals was demonstrated by optical and ESR spectroscopy methods. PTZ + • radicals stability depended on their structure as demonstrated by promazine and thioridazine radicals. Thiol compounds such as GSH and N -acetylcysteine, l -tyrosine, l -tryptophan, the corresponding peptides, ascorbate and Trolox, prevented LADH inactivation by the MPO/H 2 O 2 /thioridazine system, in close agreement with their action as PTZ + • scavengers. NADH (not NAD + ) produced transient protection of LADH against thioridazine and promazine radicals, the protection kinetics being affected by the relatively fast rate of NADH oxidation by these radicals. The role of the observed effects of PTZ radicals for PTZ cytotoxicity is discussed.  相似文献   

15.
An early biochemical change in the Parkinsonian substantia nigra (SN) is reduction in total glutathione (GSH + GSSG) levels in affected dopaminergic neurons prior to depletion in mitochondrial complex I activity, dopamine loss, and cell death. We have demonstrated using dopaminergic PC12 cell lines genetically engineered to inducibly down-regulate glutathione synthesis that total glutathione depletion in these cells results in selective complex I inhibition via a reversible thiol oxidation event. Here, we demonstrate that inhibition of complex I may occur either by direct nitric oxide (NO) but not peroxinitrite-mediated inhibition of complex I or through H2O2-mediated inhibition of the tricarboxylic acid (TCA) cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) which supplies NADH as substrate to the complex; activity of both enzymes are reduced in PD. While glutathione depletion causes a reduction in spare KGDH enzymatic capacity, it produces a complete collapse of complex I reserves and significant effects on mitochondrial function. Our data suggest that NO is likely the primary agent involved in preferential complex I inhibition following acute glutathione depletion in dopaminergic cells. This may have major implications in terms of understanding mechanisms of dopamine cell death associated with PD especially as they relate to complex I inhibition.  相似文献   

16.
Bovine heart submitochondrial particles (SMP) were exposed to continuous fluxes of hydroxyl radical (.OH) alone, superoxide anion radical (O2-) alone, or mixtures of .OH and O2-, by gamma radiolysis in the presence of 100% N2O (.OH exposure), 100% O2 + formate (O2- exposure), or 100% O2 alone (.OH + O2- exposure). Hydrogen peroxide effects were studied by addition of pure H2O2. NADH dehydrogenase, NADH oxidase, succinate dehydrogenase, succinate oxidase, and ATPase activities (Vmax) were rapidly inactivated by .OH (10% inactivation at 15-40 nmol of .OH/mg of SMP protein, 50-90% inactivation at 600 nmol of .OH/mg of SMP protein) and by .OH + O2- (10% inactivation at 20-80 nmol of .OH + O2-/mg of SMP protein, 45-75% inactivation at 600 nmol of .OH + O2-/mg of SMP protein). Importantly, O2- was a highly efficient inactivator of NADH dehydrogenase, NADH oxidase, and ATPase (10% inactivation at 20-50 nmol of O2-/mg of SMP protein, 40% inactivation at 600 nmol of O2-/mg of SMP protein), a mildly efficient inactivator of succinate dehydrogenase (10% inactivation at 150 nmol of O2-/mg of SMP protein, 30% inactivation at 600 nmol of O2-/mg of SMP protein), and a poor inactivator of succinate oxidase (less than 10% inactivation at 600 nmol of O2-/mg of SMP protein). H2O2 partially inactivated NADH dehydrogenase, NADH oxidase, and cytochrome oxidase, but even 10% loss of these activities required at least 500-600 nmol of H2O2/mg of SMP protein. Cytochrome oxidase activity (oxygen consumption supported by ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine) was remarkably resistant to oxidative inactivation, with less than 20% loss of activity evident even at .OH, O2-, OH + O2-, or H2O2 concentrations of 600 nmol/mg of SMP protein. Cytochrome c oxidase activity, however (oxidation of, added, ferrocytochrome c), exhibited more than a 40% inactivation at 600 nmol of .OH/mg of SMP protein. The .OH-dependent inactivations reported above were largely inhibitable by the .OH scavenger mannitol. In contrast, the O2(-)-dependent inactivations were inhibited by active superoxide dismutase, but not by denatured superoxide dismutase or catalase. Membrane lipid peroxidation was evident with .OH exposure but could be prevented by various lipid-soluble antioxidants which did not protect enzymatic activities at all.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Redox-dependent modulation of aconitase activity in intact mitochondria   总被引:5,自引:0,他引:5  
Bulteau AL  Ikeda-Saito M  Szweda LI 《Biochemistry》2003,42(50):14846-14855
It has previously been reported that exposure of purified mitochondrial or cytoplasmic aconitase to superoxide (O(2)(-)(*) or hydrogen peroxide (H(2)O(2)) leads to release of the Fe-alpha from the enzyme's [4Fe-4S](2+) cluster and to inactivation. Nevertheless, little is known regarding the response of aconitase to pro-oxidants within intact mitochondria. In the present study, we provide evidence that aconitase is rapidly inactivated and subsequently reactivated when isolated cardiac mitochondria are treated with H(2)O(2). Reactivation of the enzyme is dependent on the presence of the enzyme's substrate, citrate. EPR spectroscopic analysis indicates that enzyme inactivation precedes release of the labile Fe-alpha from the enzyme's [4Fe-4S](2+) cluster. In addition, as judged by isoelectric focusing gel electrophoresis, the relative level of Fe-alpha release and cluster disassembly does not reflect the magnitude of enzyme inactivation. These observations suggest that some form of posttranslational modification of aconitase other than release of iron is responsible for enzyme inactivation. In support of this conclusion, H(2)O(2) does not exert its inhibitory effects by acting directly on the enzyme, rather inactivation appears to result from interaction(s) between aconitase and a mitochondrial membrane component responsive to H(2)O(2). Nevertheless, prolonged exposure of mitochondria to steady-state levels of H(2)O(2) or O(2)(-)(*) results in disassembly of the [4Fe-4S](2+) cluster, carbonylation, and protein degradation. Thus, depending on the pro-oxidant species, the level and duration of the oxidative stress, and the metabolic state of the mitochondria, aconitase may undergo reversible modulation in activity or progress to [4Fe-4S](2+) cluster disassembly and proteolytic degradation.  相似文献   

18.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

19.
Ketoacid oxidation in rat liver mitochondria was very sensitive to t-butyl hydroperoxide (t-BuOOH). Furthermore, 2-oxoglutarate and pyruvate each enhanced t-BuOOH-induced oxidative stresses of mitochondria, such as oxidation of pyridine nucleotides and GSH, inhibition of respiration with the other NAD-linked substrates, and peroxidation of mitochondrial lipids. We provide evidence that the t-BuOOH and ketoacid-induced effects are due to the failure of supply of NADH by 2-oxoglutarate dehydrogenase, and report the inactivation of the dehydrogenase in mitochondria by simultaneous addition of 2-oxoglutarate and t-BuOOH. Using the purified enzyme, we confirmed that t-BuOOH-induced inactivation of 2-oxoglutarate dehydrogenase was enhanced by its substrate and thiamine pyrophosphate protected the dehydrogenase from the inactivation. In contrast, succinate-dependent oxidation of mitochondria was not only scarcely affected by t-BuOOH, but also succinate protected against inactivation of 2-oxoglutarate dehydrogenase by t-BuOOH in mitochondria.  相似文献   

20.
In this paper, inactivation of alcohol dehydrogenase (ADH) by products of reactions of H2O2 with metHb has been studied. Inactivation of the enzyme was studied in two systems corresponding to two kinetic stages of the reaction. In the first system H2O2 was added to the mixture of metHb and ADH [the (metHb+ADH)+H2O2] system (ADH was present in the system since the moment of addition of H2O2 i. e. since the very beginning of the reaction of metHb with H2O2). In the second system ADH was added to the system 5 min after the initiation of the reaction of H2O2 with metHb [the (metHb+H2O2)5 min+ADH] system. In the first case all the products of reaction of H2O2 with metHb (non-peroxyl and peroxyl radicals and non-radical products, viz. hydroperoxides and *HbFe(IV)=O) could react with the enzyme causing its inactivation. In the second system, enzyme reacted almost exclusively with non-radical products (though a small contribution of reactions with peroxyl radicals cannot be excluded). ADH inactivation was observed in both system. Hydrogen peroxide alone did not inactivate ADH at the concentrations employed evidencing that enzyme inactivation was due exclusively to products of reaction of H2O2 with metHb. The rate and extent of ADH inactivation were much higher in the first than in the second system. The dependence of ADH activity on the time of incubation with ferryl derivatives of Hb can be described by a sum of three exponentials in the first system and two exponentials in the second system. Reactions of appropriate forms of the ferryl derivatives of hemoglobin have been tentatively ascribed to these exponentials. The extent of the enzyme inactivation in the second system was dependent on the proton concentration, being at the highest at pH 7.4 and negligible at pH 6.0. The reaction of H2O2 with metHb resulted in the formation of cross-links of Hb subunits (dimers and trimers). The amount of the dimers formed was much lower in the first system i. e. when the radical forms dominated the reaction of inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号