首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S fimbrial adhesins I and II (SfaI and II), produced by extraintestinal Escherichia coli pathogens that cause urinary tract infections (UTI) and newborn meningitis (NBM), respectively, mediate bacterial adherence to sialic acid-containing glycoprotein receptors present on host epithelial cells and extracellular matrix. The S fimbrial adhesin complexes consist of four proteins: SfaI-A, the major subunit protein and the minor subunit proteins SfaI-G, SfaI-S and SfaI-H. Sialic acid-specific binding is mediated by the minor subunit protein SfaI-S. In order to determine whether the minor subunit proteins SfaI-G, -S and -H play a role in the modulation of adherence and the degree of fimbriation, a trans-complementation system was developed. A non-adhesive E. coli K-12 derivative, harbouring the sfaI-A gene but lacking sfaI-G, -S and -H, was transformed with sfaI-G, -S or -H. Only SfaI-S was able to increase the degree of fimbriation and to confer adhesion properties on the recombinant E. coli K-12 strains. Amino acid residues in SfaI-S that are involved in modulation of fimbriation as well as in receptor recognition were localized by random and site-directed mutagenesis.  相似文献   

2.
Abstract Bordetella pertussis serotype 2 and 3 fimbrial subunits were expressed and exported in Escherichia coli using the recently described expression/secretion vector pCGV1. Two protease deficient E. coli strains (CAG629 and EC538) and two periplasmic-leaky mutants (AE84064 and A593) were transformed with the different constructs and, after thermal induction, proteins present in the various cellular compartments were analyzed by Western blot. The results obtained with the two types of fimbrial subunits were generally the same: a recombinant protein of the expected molecular mass (19.2 kDa) was present in the periplasm of the leaky mutants and of CAG629 strain (lon protease- and heat shock protease-deficient). Only the expression of the recombinant fimbrial subunits by the tolB A593 mutant resulted in protein release into the extracellular medium. These results indicate that the use of hybrid plasmids based on pCGV1 in combination with the tolB mutant constitute an efficient system for the export of recombinant proteins.  相似文献   

3.
4.
Molecular cloning of the F8 fimbrial antigen from Escherichia coli   总被引:1,自引:0,他引:1  
Abstract The genetic determinant coding for the P-specific F8 fimbriae was cloned from the chromosome of the Escherichia coli wild-type strain 2980 (O18:K5:H5:F1C, F8). The F8 determinant was further subcloned into the Pst I site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned counterpart was demonstrated. The cloned F8 fimbriae and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepithelial cells. The cloned F8 determinant was well expressed in a variety of host strains.  相似文献   

5.
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.  相似文献   

6.
Assembly of the Escherichia coli 30S ribosomal subunits proceeds through multiple parallel pathways. The protein factors RimM, YjeQ, RbfA, and Era work in conjunction to assist at the late stages of the maturation process of the small subunit. However, it is unclear how the functional interplay between these factors occurs in the context of multiple parallel pathways. To understand how these factors work together, we have characterized the immature 30S subunits that accumulate in ΔrimM cells and compared them with immature 30S subunits from a ΔyjeQ strain. The cryo-EM maps obtained from these particles showed that the densities representing helices 44 and 45 in the rRNA were partially missing, suggesting mobility of these motifs. These 30S subunits were also partially depleted in all tertiary ribosomal proteins, particularly those binding in the head domain. Using image classification, we identified four subpopulations of ΔrimM immature 30S subunits differing in the amount of missing density for helices 44 and 45, as well as the amount of density existing in these maps for the underrepresented proteins. The structural defects found in these immature subunits resembled those of the 30S subunits that accumulate in the ΔyjeQ strain. These findings are consistent with an “early convergency model” in which multiple parallel assembly pathways of the 30S subunit converge into a late assembly intermediate, as opposed to the mature state. Functionally related factors will bind to this intermediate to catalyze the last steps of maturation leading to the mature 30S subunit.  相似文献   

7.
Septicemic Escherichia coli 4787 (O115: K-: H51: F165) of porcine origin possess gene clusters related to extraintestinal E. coli fimbrial adhesins. This strain produces two fimbriae: F165(1) and F165(2). F165(1) (Prs-like) belongs to the P fimbrial family, encoded by foo operon and F165(2) is a F1C-like encoded by fot operon. Data from this study suggest that these two operons are part of two PAIs. PAI I(4787) includes a region of 20 kb, which not only harbors the foo operon but also contains a potential P4 integrase gene and is located within the pheU tRNA gene, at 94 min of the E. coli chromosome. PAI II(4787) includes a region of over 35 kb, which harbors the fot operon, iroBCDEN gene clusters, as well as part of microcin M genes and nonfunctional mobility genes. PAI II(4787) is found between the proA and yagU at 6 min of the E. coli chromosome.  相似文献   

8.
9.
10.
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.  相似文献   

11.
A second region containing five genes homologous to the long polar fimbrial operon of Salmonella enterica serovar Typhimurium is located in the chromosome of enterohemorrhagic Escherichia coli (EHEC) O157:H7. A non-fimbriated E. coli K-12 strain carrying the cloned EHEC lpf (lpf2) genes expressed thin fibrillae-like structures on its surface and displayed reduced adherence to tissue culture cells. Neither mutation in the lpfA2 gene in either the parent or lpfA1 mutant strains showed an effect in adherence or in the formation of A/E lesions on HeLa cells. lpfA2 isogenic mutant strains adhere to Caco-2 cells almost as well as the wild-type at 5 h, but they were deficient in adherence at early time points. A collection of diarrheagenic E. coli strains were investigated for the presence of lpfA1 and lpfA2 and results showed that these genes are present in specific serogroups which are phylogenetically related. Our results suggest that LP fimbriae 2 may contribute to the early stages of EHEC adhesion and that genes encoding the major LP fimbrial subunits are present in a small group of EHEC and EPEC serotypes.  相似文献   

12.
13.
14.
15.
The S fimbrial adhesin (Sfa) enables Escherichia coli to attach to sialic acid-containing receptor molecules of eukaryotic cells. As previously reported, the genetic determinant coding for the Sfa of an E. coli O6 strain was cloned, the gene coding for the major fimbrial subunit was identified and sequenced and the S specific adhesin was detected. Here we present evidence that in addition to the major subunit protein SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14 kD) and SfaH (31 kD) can be isolated from the S-specific fimbrial adhesin complex. The genes coding for these minor subunits were identified, mutagenized separately and sequenced. Using haemagglutination tests, electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antibodies the functions of the minor subunits were determined. It was determined that SfaS is identical to the S-specific adhesin, which also plays a role in determination of the degree of fimbriation of the cell. The minor subunit SfaH also had some influence on the level of fimbriation of the cell, while SfaG is necessary for full expression of S-specific binding. It was further shown that the amino-terminal protein sequence of the isolated SfaS protein was identical to the protein sequence calculated from the DNA sequence of the sfaS gene locus.  相似文献   

16.
17.
18.
Summary Small, defined in-frame deletions and in-frame duplications of specific sequences were made within the faeG gene encoding the K88ab fimbrial subunit protein from porcine enterotoxigenic Escherichia coli. The cellular localization and proteolytic stability of the different mutated fimbrial subunit proteins were determined, and compared with those of the wild-type protein. Based upon these results, we predict a functional role of specific structures in the K88ab fimbrial subunit protein in subunit-subunit interactions as well as in interactions between FaeG and the other proteins encoded by the K88ab operon. The results obtained were further compared with results obtained from operon deletions, linker insertion mutagenesis and the current model for biogenesis of K88 fimbriae. One of the mutated fimbrial subunit genes was used to construct a secreted in-frame fusion between FaeG and a characterized epitope (lacking cysteine) from the Hepatitis B pre-S2 protein. Such fusion proteins might be useful in the design of recombinant vaccines.  相似文献   

19.
We have investigated the capacity of a well-defined Escherichia coli fimB strain, AAEC350 (a derivative of MG1655), to express type 1 fimbriae under various growth conditions. The expression of type 1 fimbriae is phase-variable due to the inversion of a 314-bp DNA segment. Two tyrosine recombinases, FimB and FimE, mediate the inversion of the phase switch. FimB can carry out recombination in both directions, whereas the current evidence suggests that FimE-catalyzed switching is on-to-off only. We show here that AAEC350 is in fact capable of off-to-on phase switching and type 1 fimbrial expression under aerobic static growth conditions. The phase switching is mediated by FimE, and allows emerging fimbriate AAEC350 to outgrow their non-fimbriate counterparts by pellicle formation. Following inversion of the phase switch, this element can remain phase-locked in the on orientation due to integration of insertion sequence elements, viz. IS1 or IS5, at various positions in either the fimE gene or the phase switch.  相似文献   

20.
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号