首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
2.
Insulin-like growth factor (IGF)-1 is accumulated in the diabetic kidney and is considered to be involved in the development of glomerular sclerosis. Here, we investigate IGF-1 regulation of laminin, an extracellular matrix (ECM) component, and cyclin D1 and p21Cip1, cell-cycle progression factor, expressions in glomerular mesangial cells. We show that IGF-1 increases the level of laminin gamma1 and beta1 subunits approximately 1.5- and 2.5-fold, respectively, in a time-dependent manner. IGF-1 also stimulates protein kinase Akt/PKB phosphorylation at Thr 308, which correlates with its activity, up to 24 h. The Akt activation is coupled with Ser 9 phosphorylation of its downstream target, glycogen synthase kinase-3beta (GSK-3beta), which inhibits its kinase activity. Laminin beta1 is reduced significantly (P < 0.03) by inhibitors of Akt and p38MAPK whereas laminin gamma1 is not affected. Surprisingly, IGF-1 activates the expression of both cyclin D1 and cell-cycle arrest factor, p21Cip1 parallely. Pharmacological inhibition of calcineurin by cyclosporin A blocks IGF-1-induced cyclin D1 and p21Cip1expression significantly (P < 0.05). IGF-1 enhances cellular metabolic activity and viability of rat mesangial cells; however, they are arrested at the G1 phase of cell cycle as revealed by the FACS analysis. These results indicate that IGF-1 mediates mesangial cell-cycle progression, hypertrophy, and ECM protein synthesis. The Akt/GSK-3beta, p38MAPK, and calcineurin pathways may play an important role in IGF-1 signaling, cell-cycle regulation, and matrix gene expression in mesangial cells leading to the development of diabetic glomerulopathy.  相似文献   

3.
Myostatin is a transforming growth factor beta superfamily member and is known as an inhibitor of skeletal muscle cell proliferation and differentiation. Exposure to myostatin induces G1 phase cell cycle arrest. In this study, we demonstrated that myostatin down-regulates Cdk4 activity via promotion of cyclin D1 degradation. Overexpression of cyclin D1 significantly blocked myostatin-induced proliferation inhibition. We further showed that phosphorylation at threonine 286 by GSK-3beta was required for myostatin-stimulated cyclin D1 nuclear export and degradation. This process is dependent upon the activin receptor IIB and the phosphatidylinositol 3-kinase/Akt pathway but not Smad3. Insulin-like growth factor 1 (IGF-1) treatment or Akt activation attenuated the myostatin-stimulated cyclin D1 degradation as well as the associated cell proliferation repression. In contrast, attenuation of IGF-1 signaling caused C2C12 cells to undergo apoptosis in response to myostatin treatment. The observation that IGF-1 treatment increases myostatin expression through a phosphatidylinositol 3-kinase pathway suggests a possible feedback regulation between IGF-1 and myostatin. These findings uncover a novel role for myostatin in the regulation of cell growth and cell death in concert with IGF-1.  相似文献   

4.
Shin SY  Choi BH  Ko J  Kim SH  Kim YS  Lee YH 《Cellular signalling》2006,18(11):1876-1886
Clozapine (CZP), a dibenzodiazepine derivative with a piperazinyl side chain, is in clinical use as an antipsychotic drug. This study investigated the effect of CZP on the modulation of the PI3K/Akt/GSK-3beta pathway in PTEN-negative U-87MG glioblastoma cells. Treatment with CZP rapidly inhibited the basal and EGF-induced phosphorylation of Akt. The inhibition of Akt resulted in the dephosphorylation of GSK-3beta and increased GSK-3beta kinase activity. A voltage-sensitive Ca(2+) channel blocker and calmodulin (CaM) antagonists inhibited Akt phosphorylation, whereas elevation of the intracellular Ca(2+) concentration prevented CZP-induced dephosphorylation of Akt and GSK-3beta, suggesting that Ca(2+)/CaM participates in the inhibition of Akt by CZP in U-87MG cells. In addition, similar to LY294002, CZP arrested cell cycle progression at G0/G1 phase, which was accompanied by decreased expression of cyclin D1. The reduction in the cyclin D1 level induced by CZP was abrogated by the inhibition of GSK-3beta, the inhibition of proteasome-dependent proteolysis, or an increase in the intracellular Ca(2+) concentration. These results suggest that the antipsychotic drug CZP modulates the PI3K/Akt/GSK-3beta pathway by counteracting Ca(2+)/CaM in PTEN-negative U-87MG glioblastoma cells.  相似文献   

5.
Previously we demonstrated that insulin protects against neuronal oxidative stress by restoring antioxidants and energy metabolism. In this study, we analysed how insulin influences insulin-(IR) and insulin growth factor-1 receptor (IGF-1R) intracellular signaling pathways after oxidative stress caused by ascorbate/Fe2+ in rat cortical neurons. Insulin prevented oxidative stress-induced decrease in tyrosine phosphorylation of IR and IGF-1R and Akt inactivation. Insulin also decreased the active form of glycogen synthase kinase-3beta (GSK-3beta) upon oxidation. Since phosphatidylinositol 3-kinase (PI-3K)/Akt-mediated inhibition of GSK-3beta may stimulate protein synthesis and decrease apoptosis, we analysed mRNA and protein expression of "candidate" proteins involved in antioxidant defense, glucose metabolism and apoptosis. Insulin prevented oxidative stress-induced increase in glutathione peroxidase-1 and decrease in hexokinase-II expression, supporting previous findings of changes in glutathione redox cycle and glycolysis. Moreover, insulin precluded Bcl-2 decrease and caspase-3 increased expression. Concordantly, insulin abolished caspase-3 activity and DNA fragmentation caused by oxidative stress. Thus, insulin-mediated activation of IR/IGF-1R stimulates PI-3K/Akt and inhibits GSK-3beta signaling pathways, modifying neuronal antioxidant defense-, glucose metabolism- and anti-apoptotic-associated protein synthesis. These and previous data implicate insulin as a promising neuroprotective agent against oxidative stress associated with neurodegenerative diseases.  相似文献   

6.
Wang Y  Feng H  Bi C  Zhu L  Pollard JW  Chen B 《FEBS letters》2007,581(16):3069-3075
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium.  相似文献   

7.
8.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

9.
10.
We have previously shown that endogenous IGF-I regulates human intestinal smooth muscle cell proliferation by activation of phosphatidylinositol 3 (PI3)-kinase- and Erk1/2-dependent pathways that jointly regulate cell cycle progression and cell division. Whereas insulin-like growth factor-I (IGF-I) stimulates PI3-kinase-dependent activation of Akt, expression of a kinase-inactive Akt did not alter IGF-I-stimulated proliferation. In other cell types, Akt-dependent phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta) inhibits its activity and its ability to stimulate apoptosis. The aim of the present study was to determine whether endogenous IGF-I regulates Akt-dependent GSK-3 beta phosphorylation and activity and whether it regulates apoptosis in human intestinal muscle cells. IGF-I elicited time- and concentration-dependent GSK-3 beta phosphorylation (inactivation) that was measured by Western blot analysis using a phospho-specific GSK-3beta antibody. Endogenous IGF-I stimulated GSK-3 beta phosphorylation and inhibited GSK-3 beta activity (measured by in vitro kinase assay) in these cells. IGF-I-dependent GSK-3 beta phosphorylation and the resulting GSK-3 beta inactivation were mediated by activation of a PI3-kinase-dependent, phosphoinositide-dependent kinase-1 (PDK-1)-dependent, and Akt-dependent mechanism. Deprivation of serum induced beta-catenin phosphorylation, increased in caspase 3 activity, and induced apoptosis of muscle cells, which was inhibited by either IGF-I or a GSK-3 beta inhibitor. Endogenous IGF-I inhibited beta-catenin phosphorylation, caspase 3 activation, and apoptosis induced by serum deprivation. IGF-I-dependent inhibition of apoptosis, similar to GSK-3 beta activity, was mediated by a PI3-kinase-, PDK-1-, and Akt-dependent mechanism. We conclude that endogenous IGF-I exerts two distinct but complementary effects on intestinal smooth muscle cell growth: it stimulates proliferation and inhibits apoptosis. The growth of intestinal smooth muscle cells is regulated jointly by the net effect of these two processes.  相似文献   

11.
12.
13.
14.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

15.
16.
Cao Q  Lu X  Feng YJ 《Cell research》2006,16(7):671-677
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.  相似文献   

17.
18.
Strategies able to down-regulate the aberrant expression of cyclin D1 may prove of therapeutic relevance in cancer patients. This is particularly true for mantle cell lymphoma (MCL) in which cyclin D1 is overexpressed as a consequence of the t(11;14)(q13;q32) translocation. We have recently demonstrated that an increased cyclin D1 stability also contributes to the high levels of this protein observed in MCL cells. This effect is mediated by a constitutive activation of PI3-K/Akt, which keeps GSK-3b inhibited. Here we show that inhibition of PI3-K/Akt induces a 40% decrease of cyclin D1 half-life as a result of accumulation of the dephosphorylated/active form of GSK-3b within the nucleus, where this kinase can phosphorylate cyclin D1 on Thr286 thereby promoting its nuclear export. Translocation of cyclin D1 into the cytoplasm is mediated by the nuclear exportin CRM1, whose association with cyclin D1 increases following PI3-K/Akt inhibition. Notably, rapamycin down-regulated GSK-3b Ser9 phosphorylation with concurrent nuclear export of cyclin D1 only in MCL cells in which GSK-3b is under the control of mTOR. These findings suggest that the ability to down-regulate cyclin D1 through GSK-3b may identify subsets of MCL patients who may benefit from the treatment with mTOR inhibitors and stimulate further studies to assess whether the inability to affect GSK-3b activity may constitute a clinically relevant resistance factor to mTOR inhibitors.  相似文献   

19.
20.
In addition to well-documented vascular growth-promoting effects, ANG II exerts proapoptotic effects that are poorly understood. IGF-1 is a potent survival factor for human vascular smooth muscle cells (hVSMC), and its antiapoptotic effects are mediated via the IGF-1 receptor (IGF-1R) through a signaling pathway involving phosphatidylinositol 3-kinase and Akt. We hypothesized that there would be cross talk between ANG II proapoptotic effects and IGF-1 survival effects in hVSMC. To investigate ANG II-induced apoptosis and the potential involvement of IGF-1, we exposed quiescent and nonquiescent hVSMC to ANG II. ANG II induced apoptosis only in nonquiescent cells but stimulated hypertrophy in quiescent cells. ANG II-induced apoptosis was characterized by marked inhibition of Akt phosphorylation and stimulation of membrane Fas ligand (FasL) expression, caspase-8 activation, and a reduction in soluble FasL expression. Adenovirally mediated overexpression of Akt rescued hVSMC from ANG II-induced apoptosis. IGF-1R activation increased Akt phosphorylation and soluble FasL expression, and these effects were completely blocked by coincubating hVSMC with ANG II. In conclusion, ANG II-induced apoptosis of hVSMC is characterized by marked inhibition of Akt phosphorylation and stimulation of an extrinsic cell death signaling pathway via upregulation of membrane FasL expression, caspase-8 activation, and a reduction in soluble FasL expression. Furthermore, ANG II antagonizes the antiapoptotic effect of IGF-1 by blocking its ability to increase Akt phosphorylation and soluble FasL. These findings provide novel insights into ANG II-induced apoptotic signaling and have significant implication for understanding ANG II-induced remodeling in hypertension and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号