首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Members of the Wnt family are known to play diverse roles in the organogenesis of vertebrates. The full-coding sequences of chicken Wnt-5a were identified and the role it plays in limb development was examined by comparing its expression pattern with that of two other Wnt members, Wnt-4 and Wnt-11, and by misexpressing it with a retrovirus vector in the limb bud. Wnt-5a expression is detected in the limb-forming region at stage 14, and in the apical ectodermal ridge and distal mesenchyme of the limb bud. The signal was graded along the proximal-distal axis at stages 20-28 and also along the anterior-posterior axis during early stages. It disappeared in the cartilage-forming region after stage 26, and was restricted to the region surrounding the phalanges at stage 34. Wnt-4 and Wnt-11, other members of the Wnt-5a-subclass, were expressed with a distinct spatiotemporal pattern during the later phase. Wnt-4 was expressed in the articular structure and Wnt-11 was expressed in the dorsal and ventral mesenchyme adjacent to the ectoderm. Wnt-5a expression was partially reduced after apical ectodermal ridge removal, whereas Wnt-11 expression was down-regulated by dorsal ectoderm removal. Therefore, expression of these Wnt was differentially regulated by the ectodermal signal. Misexpression of Wnt-5a in the limb bud with the retrovirus resulted in truncation of long bones predominantly in the zeugopod because of retarded chondrogenic differentiation. Distal elements, such as the phalanges and metacarpals, were not significantly reduced in size. These results suggest that Wnt-5a is involved in pattern formation along the proximal-distal axis by regulation of chondrogenic differentiation.  相似文献   

2.
Crossregulation between En-2 and Wnt-1 in chick tectal development   总被引:1,自引:1,他引:0  
En-1, En-2 and Wnt-1 are proposed to be essential signals for the development of the optic tectum in chick embryos. Drosophila engrailed and wingless , homologs of En ( En-1 and En-2 ) and Wnt-1 , respectively, have been shown to crossregulate each other. In the present paper, it is reported that crossregulation between En-2 and Wnt-1 is preserved in the development of the chick optic tectum. When En-2 is overexpressed by the replication competent retroviral vector, Wnt-1 is expressed ectopically at the dorsal midline of the diencephalon. When Wnt-1 is introduced extrinsically either by ectopic transplantation of mesencephalon, or by implantation of Wnt-1 producing cells, En-2 is induced ectopically at the dorsal midline of the tel-diencephalic border. Thus, ectopic expression of En-2 and Wnt-1 leads to crossregulation of each other in the chick brain. As diencephalon transdifferentiates into the optic tectum by an appropriate signal, the crossregulation of En-2 and Wnt-1 in the diencephalon may mimic the relationship required for early development in the tectum.  相似文献   

3.
4.
In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.  相似文献   

5.
6.
7.
《Developmental cell》2022,57(17):2048-2062.e4
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
Summary Type II collagen is a major component of hyaline cartilage but recent studies have demonstrated the presence of this protein in a variety of interfaces that separate epithelia from mesenchyme, particularly in early stages of embryonic chick development. In the present study an immunohistochemical analysis of the distribution of type II collagen was performed on closely staged wing buds of early chick embryo. This report describes how using two different monoclonal antibodies against type II collagen and the peroxidase or fluorescence staining technique reveals that deposition of type II collagen at the ectoderm-mesenchyme interface occurs in the proximal part of the limb coincidentally with the appearance of this protein in the proximal core region, where chondrogenesis begins (stage 25). Then the staining in the subepithelial region spreads distallly with time, following the progression of the formation of cartilage rudiments. At about 7 days of development type II collagen is present under the apical ectoderm ridge and surrounds completely the wing bud underneath the epithelium. At the same time, another antibody directed against the cartilage-specific proteoglycan core protein only stains the chondrogenic central core of the limb and not the subepithelium. Although type II collagen and cartilage-specific proteoglycan are closely associated in the cartilage, the observations presented here suggest that the deposition of these proteins can be regulated independently during limb formation. The role of type II collagen at the epithelium-mesenchyme interface during limb formation is still to be determined.  相似文献   

10.
To investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis. These results show that the dermatome inducer is produced by the dorsal neural tube. The signal can be Wnt-1 itself, or can be mediated, or at least mimicked by Wnt-1.  相似文献   

11.
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development.  相似文献   

12.
13.
14.
15.
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.  相似文献   

16.
Wnt-11/Xfz7 signaling plays a major role in the regulation of convergent extension movements affecting the dorsal marginal zone (DMZ) of gastrulating Xenopus embryos. In order to provide data concerning the molecular targets of Wnt-11/Xfz7 signals, we have analyzed the regulation of the Rho GTPase Cdc42 by Wnt-11. In animal cap ectoderm, Cdc42 activity increases as a response to Wnt-11 expression. This increase is inhibited by pertussis toxin, or sequestration of free Gbetagamma subunits by exogenous Galphai2 or Galphat. Activation of Cdc42 is also produced by the expression of bovine Gbeta1 and Ggamma2. This process is abolished by a PKC inhibitor, while phorbol esther treatment of ectodermal explants activates Cdc42 in a PKC-dependent way, implicating PKC downstream of Gbetagamma. In activin-treated animal caps and in the embryo, interference with Gbetagamma signaling rescues morphogenetic movements inhibited by Wnt-11 hyperactivation, thus phenocopying the dominant negative version of Cdc42 (N(17)Cdc42). Conversely, expression of Gbeta1gamma2 blocks animal cap elongation. This effect is reversed by N(17)Cdc42. Together, our results strongly argue for a role of Gbetagamma signaling in the regulation of Cdc42 activity downstream of Wnt-11/Xfz7 in mesodermal cells undergoing convergent extension. This idea is further supported by the observation that expression of Galphat in the DMZ causes severe gastrulation defects.  相似文献   

17.
Wnt-10b promotes differentiation of skin epithelial cells in vitro   总被引:6,自引:0,他引:6  
To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC.  相似文献   

18.
19.
Endogenous patterns of BMP signaling during early chick development   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily signaling molecules that play important roles in a wide variety of developmental processes. In this study, we have used an antibody specific for the phosphorylated and activated form of Smad1 to examine endogenous patterns of BMP signaling in chick embryos during early development. We find complex spatial and temporal distributions of BMP signaling that elucidate how BMPs may function in multiple patterning events in the early chick embryo. In the pregastrula embryo, we find that BMP signaling is initially ubiquitous and is extinguished in the epiblast at the onset of primitive streak formation. At the head process stage, BMP signaling is inactivated in prospective neural plate, while it is strongly activated at the neural plate border, a region which is populated by cells that will give rise to neural crest. During later development, we find a dynamic spatiotemporal activation of BMP signaling along the rostrocaudal axis, in the dorsal neural tube, in the notochord, and in the somites during their maturation process. We discuss the implication of our results for endogenous functions of BMP signaling during chick development.  相似文献   

20.
Effects of Wnt-10b on hair shaft growth in hair follicle cultures   总被引:1,自引:0,他引:1  
Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via beta-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and beta-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/beta-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号