首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   

3.
Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between continents. Although fish have been implicated in the scientific literature with cholera cases, as far as we know, no study actually surveyed the presence of the bacteria in the fish. Here we show for the first time that fish of various species and habitats contain V. cholerae in their digestive tract. Fish (n = 110) were randomly sampled from freshwater and marine habitats in Israel. Ten different fish species sampled from freshwater habitats (lake, rivers and fish ponds), and one marine species, were found to carry V. cholerae. The fish intestine of Sarotherodon galilaeus harboured ca. 5×103 V. cholerae cfu per 1 gr intestine content—high rates compared with known V. cholerae cfu numbers in the bacteria''s natural reservoirs. Our results, combined with evidence from the literature, suggest that fish are reservoirs of V. cholerae. As fish carrying the bacteria swim from one location to another (some fish species move from rivers to lakes or sea and vice versa), they serve as vectors on a small scale. Nevertheless, fish are consumed by waterbirds, which disseminate the bacteria on a global scale. Moreover, V. cholerae isolates had the ability to degrade chitin, indicating a commensal relationship between V. cholerae and fish. Better understanding of V. cholerae ecology can help reduce the times that human beings come into contact with this pathogen and thus minimize the health risk this poses.  相似文献   

4.
Malaria is endemic in the Cukurova region while it is sporadic in other regions of Turkey. Therefore, the laboratory and clinical diagnosis of malaria is important for the treatment of malaria. In this study, 92 blood samples that were taken from the suspected malaria patients for routine diagnosis in a period of 10 years between 1999 and 2009 were analyzed. All of these blood samples were examined by microscopic examinations using Giemsa-stained thick blood films, nested PCR, and real-time PCR. The sensitivity-specificity and positive-negative predictive values for these diagnostic tests were then calculated. It was found that the positive predictive values of microscopic examination of thick blood films, nested PCR, and real-time PCR were 47.8%, 56.5%, and 60.9% for malaria, respectively. The real-time PCR was found to have a specificity of 75% and sensitivity of 100%, while specificity and sensitivity of nested PCR was found 81.2% and 97.7% according to the microscopic examination of thick blood films, respectively.  相似文献   

5.
Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 107 m−3 by real-time PCR and 106 m−3 by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment.  相似文献   

6.
A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2℃, 79.0±0.3℃, 76.8±0.1℃, and 79.9±0.1℃, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors.  相似文献   

7.
Heidari  Z.  Moudi  B.  Mahmoudzadeh-Sagheb  H. 《Molecular Biology》2021,55(3):338-345
Molecular Biology - The HBV-related hepatocellular carcinoma (HCC) is an important liver malignancy worldwide and carries a poor prognosis. In this regard, an accurate diagnosis is necessary to...  相似文献   

8.
实时荧光定量PCR的发展和数据分析   总被引:11,自引:0,他引:11  
实时荧光定量PCR技术是基因时代一项用于检测mRNA的常用技术,是临床检测和基础研究中不可缺少的重要研究方法,包括绝对定量PCR和相对定量PCR。该技术的特点是可以减少PCR后操作,在比较不同浓度的mRNA方面具有非常宽的动力学范围。我们就目前实时荧光定量PCR的发展及数据的分析进行综述。  相似文献   

9.
实时荧光定量PCR技术的研究进展与应用   总被引:2,自引:0,他引:2  
实时荧光定量PCR技术(real-time fluorescent quantitative PCR,FQ-PCR)以其特异性强、灵敏度高、重复性好、定量准确、自动化程度高、速度快、全封闭反应等优点在人类和动物疾病的快速检测、食品安全检测、定量分析、基因分型、基因表达研究、以及疫苗效力测定中成为分子生物学研究的重要工具...  相似文献   

10.
The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (108 to 1010 cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 104 cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.  相似文献   

11.
Chima  J. C.  Ernø  H.  Ojo  M. O. 《Acta veterinaria Scandinavica》1986,27(4):531-539
A total of 55 mycoplasma strains, isolated from the vagina of goats, were examined. Three strains, being arginine positive and glucose negative, could not be finally classified. Five isolates were identified as Acholeplasma laidlawii. Fourty-seven strains were phosphatase positive, glucose and arginine negative. Nine of these formed “film and spots” on standard growth medium, and reduced tetrazolium aerobically. Serological examination identified 7 as M. agalactiae, while 2 were M. bovis. The remaining 38 isolates did not reduce tetrazolium aerobically, and did not produce “film and spots.” on standard growth medium. All these except one were identified as M. bovigenitalium by immunofluorescence. Their relationship to group 11 otf Al-Aubaidi is discussed.  相似文献   

12.
Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown’s agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown’s-positive colonies that are not B. pseudomallei.  相似文献   

13.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

14.
Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes   总被引:3,自引:0,他引:3  
Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.  相似文献   

15.
Vibrio cholerae is a natural inhabitant of the aquatic environment. However, its toxigenic strains can cause potentially life-threatening diarrhea. A quadruplex real-time PCR assay targeting four genes, the cholera toxin gene (ctxA), the hemolysin gene (hlyA), O1-specific rfb, and O139-specific rfb, was developed for detection and differentiation of O1, O139, and non-O1, non-O139 strains and for prediction of their toxigenic potential. The specificity of the assay was 100% when tested against 70 strains of V. cholerae and 31 strains of non-V. cholerae organisms. The analytical sensitivity for detection of toxigenic V. cholerae O1 and O139 was 2 CFU per reaction with cells from pure culture. When the assay was tested with inoculated water from bullfrog feeding ponds, 10 CFU/ml could reliably be detected after culture for 3 h. The assay was more sensitive than the immunochromatographic assay and culture method when tested against 89 bullfrog samples and 68 water samples from bullfrog feeding ponds. The applicability of this assay was confirmed in a case study involving 15 bullfrog samples, from which two mixtures of nontoxigenic O1 and toxigenic non-O1/non-O139 strains were detected and differentiated. These data indicate that the quadruplex real-time PCR assay can both rapidly and accurately detect/identify V. cholerae and reliably predict the toxigenic potential of strains detected.Occasional outbreaks and pandemics caused by the bacterium Vibrio cholerae indicate that cholera is still a global threat to public health (1, 2, 6, 13, 14). The disease may become life-threatening if appropriate therapy is not undertaken quickly. Of the more than 200 serogroups of V. cholerae that have been identified (28), two serogroups, O1 and O139, cause epidemic and pandemic cholera (14), whereas non-O1, non-O139 serogroups are associated only with sporadic, isolated outbreaks of diarrhea (3, 23). O1 and O139 strains are also categorized as toxin-producing and non-toxin-producing strains. The toxin-producing strains cause life-threatening secretory diarrhea, while the non-toxin-producing isolates elicit only mild diarrhea. These differences among the serogroups of V. cholerae demand rapid diagnostic tests capable of both distinguishing O1 and O139 from other serogroups and differentiating toxin-producing from nonproducing isolates (20).PCR has become a molecular alternative to culture, microscopy, and biochemical testing for the identification of bacterial species (27). Many PCR methods have been developed for characterization of serogroups (O1 and/or O139), biotypes, and the toxigenic potential of V. cholerae strains (7, 11, 15, 19, 21, 22, 24-26). However, these conventional PCR methods require gel electrophoresis for product analysis and are therefore not suitable for routine use due to the risk of carryover contamination, low throughput, and intensive labor.Real-time PCR allows detection of amplification product accumulation through fluorescence intensity changes in a closed-tube setting, which is faster and more sensitive than conventional PCR and has become increasingly popular in clinical microbiology laboratories. Moreover, when multicolor fluorophore-labeled probes and/or melting curve analysis is used, multiplex real-time PCR can be designed to simultaneously detect many different target genes in a single reaction tube (8). So far, the majority of published real-time PCR assays for V. cholerae detect no more than two genes simultaneously (4, 8, 18), which precludes their use for simultaneous serogroup and toxin status determination. Recent reports show that multiplex real-time PCR greatly improves specificity and sensitivity for the detection of V. cholerae through either melting curve analysis (9) or using differently fluorophore-labeled probes (10).In the present work, we report the development of a quadruplex real-time PCR assay that enables simultaneous serogroup differentiation and toxigenic potential detection. By using four different fluorophore-labeled probes, which target hlyA, O1-specfic rfb, O139-specific rfb, and ctxA, the quadruplex assay can reveal whether the target is an O1, O139, or non-O1/non-O139 strain and whether the bacterium detected is capable of producing toxins. We report that by alleviating primer dimer formation by use of a homotag-assisted nondimer system (HANDS) (5), we were able to retain the analytical sensitivity of uniplex PCR and successfully differentiated serogroups and toxigenic potentials from aquatic animal and environmental samples.  相似文献   

16.

Background

Molecular tests for diagnosis of disease, particularly cancer, are gaining increased acceptance by physicians and their patients for disease prognosis and selection of treatment options. Gene expression profiles and genetic mutations are key parameters used for the molecular characterization of tumors. A variety of methods exist for mutation analysis but the development of assays with high selectivity tends to require a process of trial and error, and few are compatible with real-time PCR. We sought to develop a real-time PCR-based mutation assay methodology that successfully addresses these issues.

Methodology/Principal Findings

The method we describe is based on the widely used TaqMan® real-time PCR technology, and combines Allele-Specific PCR with a Blocking reagent (ASB-PCR) to suppress amplification of the wildype allele. ASB-PCR can be used for detection of germ line or somatic mutations in either DNA or RNA extracted from any type of tissue, including formalin-fixed paraffin-embedded tumor specimens. A set of reagent design rules was developed enabling sensitive and selective detection of single point substitutions, insertions, or deletions against a background of wild-type allele in thousand-fold or greater excess.

Conclusions/Significance

ASB-PCR is a simple and robust method for assaying single nucleotide mutations and polymorphisms within the widely used TaqMan® protocol for real time RT-PCR. The ASB-PCR design rules consistently produce highly selective mutation assays while obviating the need for redesign and optimization of the assay reagents. The method is compatible with formalin-fixed tissue and simultaneous analysis of gene expression by RT-PCR on the same plate. No proprietary reagents other than those for TaqMan chemistry are required, so the method can be performed in any research laboratory with real-time PCR capability.  相似文献   

17.
Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been recently described as an alternative PCR-based technique for absolute quantification with higher accuracy compared to qPCR. Here, a comparison was made between the droplet digital PCR (ddPCR) and the seminested qPCR for quantification of unspliced (us) and multiply spliced (ms) CA HIV-1 RNA. Synthetic RNA standards and CA HIV-1 RNA from infected patients on and off ART (N = 34) were quantified with both methods. Correlations were observed between the methods both for serially diluted synthetic standards (usRNA: R2 = 0.97, msRNA: R2 = 0.92) and patient-derived samples (usRNA: R2 = 0.51, msRNA: R2 = 0.87). Seminested qPCR showed better quantitative linearity, accuracy and sensitivity in the quantification of synthetic standards than ddPCR, especially in the lower quantification ranges. Both methods demonstrated equally high detection rate of usRNA in patient samples on and off ART (91%), whereas ddPCR detected msRNA in larger proportion of samples from ART-treated patients (p = 0.13). We observed an average agreement between the methods for usRNA quantification in patient samples, albeit with a large standard deviation (bias = 0.05±0.75 log10). However, a bias of 0.94±0.36 log10 was observed for msRNA. No-template controls were consistently negative in the seminested qPCR, but yielded a positive ddPCR signal for some wells. Therefore, the false positive signals may have affected the detection power of ddPCR in this study. Digital PCR is promising for HIV nucleic acid quantification, but the false positive signals need further attention. Quantitative assays for CA HIV RNA have the potential to improve monitoring of patients on ART and to be used in clinical studies aimed at HIV eradication, but should be cross-validated by multiple laboratories prior to wider use.  相似文献   

18.
Eukaryotic cells constitutively produce nanovesicles of 50–150 nm of diameter, referred to as exosomes, upon release of the contents of multivesicular bodies (MVBs). We recently characterized a novel, exosome-based way to induce cytotoxic T lymphocyte (CTL) immunization against full-length antigens. It is based on DNA vectors expressing products of fusion between the exosome-anchoring protein Nef mutant (Nefmut) with the antigen of interest. The strong efficiency of Nefmut to accumulate in MVBs results in the production of exosomes incorporating huge amounts of the desired antigen. When translated in animals, the injection of Nefmut-based DNA vectors generates engineered exosomes whose internalization in antigen-presenting cells induces cross-priming and antigen-specific CTL immunity. Here, we describe the molecular strategies we followed to produce DNA vectors aimed at generating immunogenic exosomes potentially useful to elicit a CTL immune response against antigens expressed by the etiologic agents of major chronic viral infections, i.e., HIV-1, HBV, and the novel tumor-associated antigen HOXB7. Unique methods intended to counteract intrinsic RNA instability and nuclear localization of the antigens have been developed. The success we met with the production of these engineered exosomes opens the way towards pre-clinic experimentations devoted to the optimization of new vaccine candidates against major infectious and tumor pathologies.  相似文献   

19.
分子信标-实时 PCR法快速检测双歧杆菌的研究   总被引:3,自引:0,他引:3  
王超  孟祥晨 《微生物学通报》2007,34(6):1163-1168
为建立双歧制品中双歧杆菌快速、敏感、特异的检测方法,根据双歧杆菌16SrRNA/16SrDNA基因设计合成了双歧杆菌属特异性引物和分子信标探针,建立了快速检测双歧杆菌的分子信标-实时PCR检测方法,并对反应条件进行优化。检测方法重复性好,批内和批间变异系数均小于5%;特异性强,扩增曲线呈现明显的S型,无非特异性扩增;灵敏度高,是普通PCR的100倍,对纯双歧杆菌DNA的检出限为5.7fg/PCR反应体系,纯双歧杆菌菌液的检出限为2×103CFU/mL;线形范围宽,起始模板数在2×108CFU/mL~2×104CFU/mL之间具有良好的线性关系,相关系数大于97%。该方法具有灵敏、特异、简便和快速的特点,可用于对双歧杆菌原位菌数的定量检测。  相似文献   

20.
Fluorescence is highly sensitive to environment, and the distance separating fluorophores and quencher molecules can provide the basis for effective homogeneous nucleic acid hybridization assays. Molecular interactions leading to fluorescence quenching include collisions, ground state and excited state complex formation, and long-range dipole-coupled energy transfer. These processes are well understood and equations are provided for estimating the effects of each process on fluorescence intensity. Estimates for the fluorescein-tetramethylrhodamine donor–acceptor pair reveal the relative contributions of dipole-coupled energy transfer, collisional quenching, and static quenching in several common assay formats, and illustrate that the degree of quenching is dependent upon the hybridization complex formed and the manner of label attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号