共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial expression of E-selectin is enhanced in diabetic patients with retinopathy, however, the underlying mechanisms are unclear. Therefore, this study was aimed to determine if endothelial expression of E-selectin is stimulated with serum from type 2 diabetic patients with retinopathy, and whether this process is related to NAD(P)H oxidase-derived oxidative stress. Serum was obtained from type 2 diabetic patients with (T2DR) or without (T2DM) retinopathy, and age-matched non-diabetic healthy person (Control). Serum was added to in vitro-grown human coronary artery endothelial cells (HCAEC), after which E-selectin expression, reactive oxygen species (ROS) production, and NAD(P)H oxidase activity were measured. Serum from T2DR induced a significantly higher expression of E-selectin than serum from T2DM and control in association with an enhanced production of ROS in HCAEC. T2DR serum enhanced E-selectin expression in a ROS-dependent manner since this process was significantly attenuated not only by tiron (1 mM), a superoxide scavenger, but also by DPI (10 micromol/L) and apocynin (100 micromol/L), inhibitors of NAD(P)H oxidase. Furthermore, the activity of NADH oxidase was markedly increased by T2DR serum, and this was accompanied by the enhanced membrane translocation of p47phox, a cytosolic subunit of NAD(P)H oxidase. These findings suggest that serum from T2DR induced up-regulation of E-selectin expression in HCAEC, and this process might be dependent on activation of endothelial NADH oxidase via an enhanced membrane translocation of p47phox. 相似文献
2.
NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats 总被引:3,自引:0,他引:3
Park YM Park MY Suh YL Park JB 《Biochemical and biophysical research communications》2004,313(3):812-817
Increased bioavailability of reactive oxygen species (ROS) has been implicated in the pathogenesis of mineralocorticoid hypertension. To find out the source of ROS, we evaluated the role of NAD(P)H oxidase in blood pressure (BP) elevation, cardiovascular hypertrophy, and fibrosis in aldosterone-salt rats. Aldosterone infusion (0.75 microg/h) significantly increased BP, which is attenuated by apocynin (1.5 mmol/L). Cardiac hypertrophy developed by aldosterone infusion was also normalized with apocynin. Greater mRNA for p22phox and NAD(P)H oxidase activity (more than twofold) in aorta of aldosterone-infused rats was reduced in apocynin-treated rats. Aldosterone infusion increased marginally procollagen I and III expression in LV compared to controls and apocynin decreased procollagen. Masson's Trichrome stain showed increased cardiac perivascular fibrosis, which was reduced by apocynin. These results suggest that NAD(P)H oxidase plays an important role in cardiovascular damage associated with mineralocorticoid hypertension. 相似文献
3.
Agnieszka Piwkowska Dorota Rogacka Marek Henryk Dominiczak Stefan Angielski 《Biochemical and biophysical research communications》2010,393(2):268-273
Hyperglycemia increases the production of reactive oxygen species (ROS). NAD(P)H oxidase, producing superoxide anion, is the main source of ROS in diabetic podocytes and their production contributes to the development of diabetic nephropathy. We have investigated the effect of an antidiabetic drug, metformin on the production of superoxide anion in cultured podocytes and attempted to elucidate underlying mechanisms.The experiments were performed in normal (NG, 5.6 mM) and high (HG, 30 mM) glucose concentration. Overall ROS production was measured by fluorescence of a DCF probe. Activity of NAD(P)H oxidase was measured by chemiluminescence method. The AMP-dependent kinase (AMPK) activity was determined by immunobloting, measuring the ratio of phosphorylated AMPK to total AMPK. Glucose accumulation was measured using 2-deoxy-[1,2-3H]-glucose.ROS production increased by about 27% (187 ± 8 vs. 238 ± 9 arbitrary units AU, P < 0.01) in HG. Metformin (2 mM, 2 h) markedly reduced ROS production by 45% in NG and 60% in HG. Metformin decreased NAD(P)H oxidase activity in NG (36%) and HG (86%). AMPK activity was increased by metformin in NG and HG (from 0.58 ± 0.07 to. 0.99 ± 0.06, and from 0.53 ± 0.03 to 0.64 ± 0.03; P < 0.05). The effects of metformin on the activities of NAD(P)H oxidase and AMPK were abolished in the presence of AMPK inhibitor, compound C.We have shown that metformin decreases production of ROS through reduction of NAD(P)H oxidase activity. We also have demonstrated relationship between activity of NAD(P)H oxidase and AMPK. 相似文献
4.
Tullia Maraldi Cecilia Prata Francesco Vieceli Dalla Sega Cristiana Caliceti Laura Zambonin Diana Fiorentini 《Free radical research》2013,47(11):1111-1121
The mechanism involved in the prosurvival effect of interleukin-3 on the human acute myeloid leukaemia cell line M07e is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as diphenylene iodonium and apocynin, and by small interference RNA for Nox2. Moreover, IL-3 incubation stimulated the synthesis of Nox2 cytosolic sub-unit p47phox and glucose transporter Glut1. Thus, the inhibition of ROS generation by Nox inhibitors stimulated apoptosis showing that ROS production, induced by IL-3 via Nox2, protects leukaemic cells from cell death. Also incubation with receptor tyrosine kinase inhibitors, such as anti-leukaemic drugs blocking the stem cell factor receptor (c-kit), showed similar effects, hinting that IL-3 transmodulates c-kit phosphorylation. These mechanisms may play an important role in acute myeloid leukaemia treatment, representing a novel therapeutic target. 相似文献
5.
The oxidation of cytosolic NAD(P)H by external NAD(P)H dehydrogenases in the respiratory chain of plant mitochondria 总被引:2,自引:0,他引:2
Ian M. Møller 《Physiologia plantarum》1997,100(1):85-90
The respiratory chain of plant mitochondria differs from that in mammalian mitochondria by containing several rotenone-insensitive NAD(P)H dehydrogenases. Two of these are located on the outer, cytosolic surface of the inner membrane. One is specific for NADH, the other for NADPH. Only the latter is inhibited by diphenyleneiodonium (DPI). Both of these enzymes are normally dependent upon Ca2+ for activity and this constitutes a potentially important mechanism by which the cell can regulate the oxidation of cytosolic NAD(P)H via the concentration of free Ca2+ . This and other potential regulatory mechanisms such as the substrate concentration and polyamines are discussed. 相似文献
6.
7.
Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist 总被引:10,自引:0,他引:10
Nakayama M Inoguchi T Sonta T Maeda Y Sasaki S Sawada F Tsubouchi H Sonoda N Kobayashi K Sumimoto H Nawata H 《Biochemical and biophysical research communications》2005,332(4):927-933
This study was undertaken to reveal the role of NAD(P)H oxidase in increased oxidative stress in islets of Type 2 diabetes. Immunostaining analysis showed that staining intensities of NAD(P)H oxidase components, gp91phox and p22phox, significantly increased in islets of animal models of Type 2 diabetes, OLETF rats (60 weeks of age) and db/db mice (14 weeks of age), compared with age-matched controls, respectively, correlating with increased levels of oxidative stress marker, 8-hydroxy-deoxyguanosine or 4-hydroxy-2-nonenal modified protein. In db/db mice, oral administration of angiotensin II Type 1 receptor antagonist valsartan (5 mg/kg) for 4 weeks significantly attenuated the increased expression of gp91phox and p22phox together with inhibition of oxidative stress and partially restored decreased insulin contents in islets. Angiotensin II-related increased expression of NAD(P)H oxidase may play an important role in increased oxidative stress in islets of Type 2 diabetes. This mechanism may be a novel therapeutic target for preventing beta-cell damage. 相似文献
8.
Vanadate-stimulated oxidation of NAD(P)H 总被引:1,自引:0,他引:1
Vanadate stimulates the oxidation of NAD(P)H by biological membranes because such membranes contain NAD(P)H oxidases which are capable of reducing dioxygen to O2− and because vanadate catalyzes the oxidation of NAD(P)H by O2−, by a free radical chain mechanism. Dihydropyridines, such as reduced nicotinamide mononucleotide (NMNH), which are not substrates for membrane-associated NAD(P)H oxidases, are not oxidized by membranes plus vanadate unless NAD(P)H is present to serve as a source of O2−. When [NMNH] greatly exceeds [NAD(P)H], in such reaction mixtures, one can observe the oxidation of many molecules of NMNH per NAD(P)H consumed. This reflects the chain length of the free radical chain mechanism. We have discussed the mechanism and significance of this process and have tried to clarify the pertinent but confusing literature. 相似文献
9.
The increased levels of NAD(P)H effected by electrical depolarization are markedly augmented in the presence of cyclic AMP, isoproterenol, or RO 20-1724, agents known to elevate cyclic AMP in rat brain slices. The data presented indicate that the cyclic AMP effect on an important component of intermediate metabolism is not an enhancement of a basal response but a separate response that is activated by depolarization, is Ca2+-dependent, regulates cytochrome a-a3 independently of its effects on NAD(P)H levels, and is dependent on a substrate other than glucose. 相似文献
10.
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type. 相似文献
11.
Asymmetric biosyntheses allow for an efficient production of chiral building blocks. The application of whole cells as biocatalysts for asymmetric syntheses is advantageous because they already contain the essential coenzymes NAD(H) or NADP(H), which additionally can be regenerated in the cells. Unfortunately, reduced catalytic activity compared to the oxidoreductase activity is observed in many cases during whole‐cell biotransformation. This may be caused by low intracellular coenzyme pool sizes and/or a decline in intracellular coenzyme concentrations. To enhance the intracellular coenzyme pool sizes, the effects of the precursor metabolites adenine and nicotinic acid on the intracellular accumulation of NAD(H) and NADP(H) were studied in Saccharomyces cerevisiae. Based on the results of simple batch experiments with different precursor additions, fed‐batch processes for the production of yeast cells with enhanced NAD(H) or enhanced NADP(H) pool sizes were developed. Supplementation of the feed medium with 95 mM adenine and 9.5 mM nicotinic acid resulted in an increase of the intracellular NAD(H) concentration by a factor of 10 at the end of the fed‐batch process compared to the reference process. The final NAD(H) concentration remains unchanged if the feed medium was solely supplemented with 95 mM adenine, but intracellular NADP(H) was increased by a factor of 4. The effects of NADP(H) pool sizes on the asymmetric reduction of ethyl‐4‐chloro acetoacetate (CAAE) to the corresponding (S)‐4‐chloro‐3‐hydroxybutanoate (S‐CHBE) was evaluated with S. cerevisiae FasB His6 as an example. An intracellular threshold concentration above 0.07 mM NADP(H) was sufficient to increase the biocatalytic S‐CHBE productivity by 25 % compared to lower intracellular NADP(H) concentrations. 相似文献
12.
Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). l-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p < 0.05) and a 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53–7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity. 相似文献
13.
14.
A thioredoxin reductase (TrxR) has been identified in the hyperthermophilic archaeon Sulfolobus solfataricus (Ss). This enzyme is a homodimeric flavoprotein that was previously identified as NADH oxidase in the same micro-organism ('Biotechnol. Appl. Biochem. 23 (1996) 47'). The primary structure of SsTrxR is made of 323 amino acid residues and contains two putative betaalphabeta regions for the binding of FAD, and a NADP(H) binding consensus sequence in the proximity of a CXXC motif. These findings indicate that SsTrxR is structurally related to the class II of the pyridine nucleotide-disulphide oxidoreductases family. Moreover, the enzyme exhibits a NADP(H) dependent thioredoxin reductase activity requiring the presence of FAD. Surprisingly, the reductase activity of SsTrxR is reduced in the presence of a specific inhibitor of mammalian TrxR. This finding demonstrates that the archaeal enzyme, although structurally related to eubacterial TrxR, is functionally closer to eukaryal enzymes. Experimental evidences indicate that a disulphide bridge is required for the reductase but also for the NADH oxidase activity of the enzyme. These results are further supported by the significantly reduced activities exerted by the C147A mutant. The integrity of the CXXC motif is also involved in the stability of the enzyme. 相似文献
15.
利用离子交换与凝胶过滤层析 ,从n dodecylβ D maltoside(DM)处理的集胞蓝藻SynechocystisPCC6 80 3细胞粗提液中 ,首次分离到两个包含NDH疏水亚基NdhA的亚复合体。酶活性分析表明 ,分离到的NDH亚复合体具有NADPH 氮蓝四唑 (NBT)氧化还原酶活性 ,以NADPH为电子供体可以还原铁氰化钾、二溴百里香醌 (DBMIB)、二氯酚靛酚 (DCPIP)、duroquinone以及UQ 0等质醌类电子受体。 相似文献
16.
Wei Zhang Min Zhu Feng Wang Danhui Cao Jennifer Jin Ruan Weike Su Benfang Helen Ruan 《Analytical biochemistry》2016
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and is important for several biological processes. For GDH inhibitor screening, we developed a novel mono-sulfonated tetrazolium salt (EZMTT), which can be synthesized using H2O2 oxidation and purified easily on silica gel in large quantities. The EZMTT detection method showed linear dose responses to NAD(P)H, dehydrogenase concentration and cell numbers. In E. coli GDH assay, the EZMTT method showed excellent assay reproducibility with a Z factor of 0.9 and caused no false positives in the presence of antioxidants (such as BME). Using the EZMTT-formazan-NAD(P)H system, we showed that EGCG is a potent E. coli GDH inhibitor (IC50 45 nM) and identified that Ebselen, a multifunctional thioredoxin reductase inhibitor, inactivated E. coli GDH (IC50 213 nM). In cell-based assays at 0.5 mM tetrazolium concentration, EZMTT showed essentially no toxicity after a 3-day incubation, whereas 40% of inhibition was observed for WST-8. In conclusion, EZMTT is a novel tetrazolium salt which provides improved features that are suitable for dehydrogenases and real-time cell-based high-throughput screening (HTS). 相似文献
17.
The amino acid fermentation by Corynebacterium glutamicum was monitored with an new technique that uses the first derivative of the NAD(P)H fluorescene signal. The rate of change of NAD(P)H pools is indicative of intracellular redox balance variations that correspond to metabolic changes. The profile of this signal showed several characteristics that coincided with major metabolic events during fermentation. We show here that the derivative fluorescence signal can accurately estimate points of threonine depletion, viable cell count, and the end of amino acid formation. Furthermore, on-line optimization strategies can be developed by using the derivative fluorescene signal. (c) 1994 John Wiley & Sons, Inc. 相似文献
18.
Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier. 相似文献
19.
Intracellular NAD(P)H oxidoreductases are a class of diverse enzymes that are the key players in a number of vital processes. The method we present and validate here is based on the ability of many NAD(P)H oxidoreductases to reduce the superoxide probe lucigenin, which is structurally similar to flavins, to its highly fluorescent water-insoluble derivative dimethylbiacridene. Two modifications of the method are proposed: (i) an express method for tissue homogenate and permeabilized cells in suspensions and (ii) a standard procedure for cells in culture and acute thin tissue slices. The method allows one to assess, visualize, and localize, using fluorescent markers of cellular compartments, multiple NADH and NADPH oxidoreductase activities. The application of selective inhibitors (e.g., VAS2870, a NOX2 inhibitor; plumbagin, a NOX4 inhibitor) allows one to distinguish and compare specific NAD(P)H oxidoreductase activities in cells and tissues and to attribute them to known enzymes. The method is simple, rapid, and flexible. It can be easily adapted to a variety of tasks. It will be useful for investigations of the role of various NAD(P)H oxidoreductases in a number of physiological and pathophysiological processes. 相似文献
20.
Ian M. Møller Allan G. Rasmusson Kenneth M. Fredlund 《Journal of bioenergetics and biomembranes》1993,25(4):377-384
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK
0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK
0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer. 相似文献