共查询到20条相似文献,搜索用时 0 毫秒
1.
Malini Manoharan Patrick F.J. Fuchs 《Journal of biomolecular structure & dynamics》2013,31(11):1742-1751
Chemical recognition plays an important role for the survival and reproduction of many insect species. Odorant binding proteins (OBPs) are the primary components of the insect olfactory mechanism and have been documented to play an important role in the host-seeking mechanism of mosquitoes. They are “transport proteins” believed to transport odorant molecules from the external environment to their respective membrane targets, the olfactory receptors. The mechanism by which this transport occurs in mosquitoes remains a conundrum in this field. Nevertheless, OBPs have proved to be amenable to conformational changes mediated by a pH change in other insect species. In this paper, the effect of pH on the conformational flexibility of mosquito OBPs is assessed computationally using molecular dynamics simulations of a mosquito OBP “CquiOBP1” bound to its pheromone 3OG (PDB ID: 3OGN). Conformational twist of a loop, driven by a set of well-characterized changes in intramolecular interactions of the loop, is demonstrated. The concomitant (i) closure of what is believed to be the entrance of the binding pocket, (ii) expansion of what could be an exit site, and (iii) migration of the ligand towards this putative exit site provide preliminary insights into the mechanism of ligand binding and release of these proteins in mosquitoes. The correlation of our results with previous experimental observations based on NMR studies help us provide a cardinal illustration on one of the probable dynamics and mechanism by which certain mosquito OBPs could deliver their ligand to their membrane-bound receptors at specific pH conditions. 相似文献
2.
Oomen CJ Hoogerhout P Bonvin AM Kuipers B Brugghe H Timmermans H Haseley SR van Alphen L Gros P 《Journal of molecular biology》2003,328(5):1083-1089
We present an in silico, structure-based approach for design and evaluation of conformationally restricted peptide-vaccines. In particular, we designed four cyclic peptides of ten or 11 residues mimicking the crystallographically observed beta-turn conformation of a predicted immunodominant loop of PorA from Neisseria meningitidis. Conformational correctness and stability of the peptide designs, as evaluated by molecular dynamics simulations, correctly predicted the immunogenicity of the peptides. We observed a peptide-induced functional antibody response that, remarkably, exceeded the response induced by the native protein in outer membrane vesicles, without losing specificity for related strains. The presented approach offers tools for a priori design and selection of peptide-vaccine candidates with full biological activity. This approach could be widely applicable: to outer membrane proteins of Gram-negative bacteria, and to other epitopes in a large range of pathogens. 相似文献
3.
This paper describes a new binding assay that uses oligodeoxyribonucleotides (DNAs) obtained by the in vitro selection method instead of antibodies. DNAs that specifically bound to a target molecule were selected, labeled with some probes, and then used to detect the target molecule by staining or competitive binding assay. 相似文献
4.
Bharat Manna 《Journal of biomolecular structure & dynamics》2013,31(15):3987-4005
AbstractIncreasing population growth and industrialization are continuously oppressing the existing energy resources, elevating the pollution and global fuel demand. Various alternate energy resources can be utilized to cope with these problems in an environment-friendly fashion. Currently, bioethanol (sugarcane, corn-derived) is one of the most widely consumed biofuels in the world. Lignocellulosic biomass is yet another attractive resource for sustainable bioethanol production. Pretreatment step plays a crucial role in the lignocellulose to bioethanol conversion by enhancing cellulose susceptibility to enzymatic hydrolysis. However, economical lignocellulose pretreatment still remains a challenging job. Ionic liquids (ILs), especially 1-ethyl-3-methylimidazolium acetate (EmimAc), is an efficient solvent for cellulose dissolution with improved enzymatic saccharification kinetics. To increase the process efficiency as well as recyclability of IL, water is shown as a compatible cosolvent for lignocellulosic pretreatment. The performance analysis of IL–water mixture based on the molecular level understanding may help to design effective pretreatment solvents. In this study, all-atom molecular dynamics simulation has been performed using EmimAc–water mixtures to understand the behavior of cellulose microcrystal containing eight glucose octamers at room and pretreatment temperatures. High-temperature simulation results show effective cellulose chain separation where cellulose–acetate interaction is found to be the driving force behind dissolution. It is also observed that pretreatment with 50 and 80% IL mixture is efficient in decreasing cellulose crystallinity. At a high IL concentration, water exists in a clustered network which gradually spans into the medium with increasing water fraction leading to loss of its cosolvation activity.Communicated by Ramaswamy H. Sarma 相似文献
5.
Doytchinova I Petkov P Dimitrov I Atanasova M Flower DR 《Protein science : a publication of the Protein Society》2011,20(11):1918-1928
Major histocompatibility complex (MHC) II proteins bind peptide fragments derived from pathogen antigens and present them at the cell surface for recognition by T cells. MHC proteins are divided into Class I and Class II. Human MHC Class II alleles are grouped into three loci: HLA-DP, HLA-DQ, and HLA-DR. They are involved in many autoimmune diseases. In contrast to HLA-DR and HLA-DQ proteins, the X-ray structure of the HLA-DP2 protein has been solved quite recently. In this study, we have used structure-based molecular dynamics simulation to derive a tool for rapid and accurate virtual screening for the prediction of HLA-DP2-peptide binding. A combinatorial library of 247 peptides was built using the "single amino acid substitution" approach and docked into the HLA-DP2 binding site. The complexes were simulated for 1 ns and the short range interaction energies (Lennard-Jones and Coulumb) were used as binding scores after normalization. The normalized values were collected into quantitative matrices (QMs) and their predictive abilities were validated on a large external test set. The validation shows that the best performing QM consisted of Lennard-Jones energies normalized over all positions for anchor residues only plus cross terms between anchor-residues. 相似文献
6.
Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and their combination with molecular dynamics simulations. For neurotensin, a peptide that binds with high affinity to a G-protein coupled receptor, this method permits the investigation of the changes in conformational preferences of a neurotransmitter transferred from a frozen aqueous solution via a lipid model phase to the receptor-bound form. The results speak against a conformational pre-organization of the ligand in detergents in which the receptor has been shown to be functional. Further extensions to the study of protein folding are possible. 相似文献
7.
A coarse-grained dynamic Monte Carlo method is proposed for investigating the conformational dynamics of proteins. Each residue is represented by two interaction sites, one at the α-carbon, and the other on the amino acid sidechain. Geometry and energy parameters extracted from databank structures are used. The method is applied to the crystal structure of apomyoglobin (apo-Mb). Equilibrium and dynamic properties of apo-Mb are characterized within computation times one order of magnitude shorter than conventional molecular dynamics (MD) simulations. The calculated rms fluctuations in α-carbons are in good agreement with crystallographic temperature factors. Regions exhibiting enhanced conformational mobilities are identified. Among the loops connecting the eight helices A to H, the loop CD undergoes the fastest motions, leading to partial unwinding of helix D. Helix G is the most stable helix on the basis of the kinetic stability of dihedral angles, followed by the respective helices A, E, H, and B. These results, in agreement with H/D exchange and two-dimensional NMR experiments, as well as with MD simulations, lend support to the use of the proposed approach as an efficient, yet physically plausible, means of characterizing protein conformational dynamics. Proteins 31:271–281, 1998. © 1998 Wiley-Liss, Inc. 相似文献
8.
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible. 相似文献
9.
The dynamics of alpha-amylase inhibitors has been investigated using molecular dynamics (MD) simulations and two analytical approaches, the Gaussian network model (GNM) and anisotropic network model (ANM). MD simulations use a full atomic approach with empirical force fields, while the analytical approaches are based on a coarse-grained single-site-per-residue model with a single-parameter harmonic potential between sufficiently close (r = 7 A) residue pairs. The major difference between the GNM and the ANM is that no directional preferences can be obtained in the GNM, all residue fluctuations being theoretically isotropic, while ANM does incorporate directional preferences. The dominant modes of motions are identified by (i) the singular value decomposition (SVD) of the MD trajectory matrices, and (ii) the similarity transformation of the Kirchhoff matrices of inter-residue contacts in the GNM or ANM. The mean-square fluctuations of individual residues and the cross-correlations between domain movements retain the same characteristics, in all approaches-although the dispersion of modes and detailed amplitudes of motion obtained in the ANM conform more closely with MD results. The major weakness of the analytical approaches appears, on the other hand, to be their inadequacy to account for the anharmonic motions or multimeric transitions driven by the slowest collective mode observed in MD. Such motions usually suffer, however, from MD sampling inefficiencies, and multiple independent runs should be tested before making conclusions about their validity and detailed mechanisms. Overall this study invites attention to (i) the robustness of the average properties (mean-square fluctuations, cross-correlations) controlled by the low frequency motions, which are invariably reproduced in all approaches, and (ii) the utility and efficiency of the ANM, the computational time cost of which is of the order of "minutes" (real time), as opposed to "days" for MD simulations. Proteins 2000;40:512-524. 相似文献
10.
11.
12.
André S Pei Z Siebert HC Ramström O Gabius HJ 《Bioorganic & medicinal chemistry》2006,14(18):6314-6326
Dynamic combinatorial library design exploiting the thiol-disulfide exchange readily affords access to glycosyldisulfides. In order to reveal lectin-binding properties of this type of non-hydrolyzable sugar derivative, libraries originating from a mixture of common building blocks of natural glycans and thiocompounds were tested against three plant agglutinins with specificity to galactose, fucose or N-acetylgalactosamine, respectively, in a solid-phase assay. Extent of lectin binding to matrix-immobilized neoglycoprotein presenting the cognate sugar could be reduced, and evidence for dependence on type of carbohydrate was provided by dynamic deconvolution. Glycosyldisulfides also maintained activity in assays of increased physiological relevance, that is, using native tumor cells and also adding to the test panel an endogenous lectin (galectin-3) involved in tumor spread and cardiac dysfunction. N-Acetylgalactosamine was pinpointed as the most important building block of libraries for the human lectin and the digalactoside as most potent compound acting on the toxic mistletoe agglutinin which is closely related to the biohazard ricin. Because this glycosyldisulfide, which even surpasses lactose in inhibitory capacity, rivals thiodigalactoside as inhibitor, their degrees of intramolecular flexibility were comparatively analyzed by computational calculations. Molecular dynamics runs with explicit consideration of water molecules revealed a conspicuously high degree of potential for shape alterations by the disulfide's three-bond system at the interglycosidic linkage. The presented evidence defines glycosyldisulfides as biologically active ligands for lectins. 相似文献
13.
Pang YP 《Proteins》2004,57(4):747-757
Severe acute respiratory syndrome (SARS) is a contagious and deadly disease caused by a new coronavirus. The protein sequence of the chymotrypsin-like cysteine proteinase (CCP) responsible for SARS viral replication has been identified as a target for developing anti-SARS drugs. Here, I report the ATVRLQ(p1)A(p1')-bound CCP 3D model predicted by 420 different molecular dynamics simulations (2.0 ns for each simulation with a 1.0-fs time step). This theoretical model was released at the Protein Data Bank (PDB; code: 1P76) before the release of the first X-ray structure of CCP (PDB code: 1Q2W). In contrast to the catalytic dyad observed in X-ray structures of CCP and other coronavirus cysteine proteinases, a catalytic triad comprising Asp187, His41, and Cys145 is found in the theoretical model of the substrate-bound CCP. The simulations of the CCP complex suggest that substrate binding leads to the displacement of a water molecule entrapped by Asp187 and His41, thus converting the dyad to a more efficient catalytic triad. The CCP complex structure has an expanded active-site pocket that is useful for anti-SARS drug design. In addition, this work demonstrates that multiple molecular dynamics simulations are effective in correcting errors that result from low-sequence-identity homology modeling. 相似文献
14.
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery. 相似文献
15.
16.
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility. 相似文献
17.
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, Pi, referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted. 相似文献
18.
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs. 相似文献
19.
Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations of the stretching process to unravel the mechanism of forced conformational transitions in 1,6 linked polysaccharides. In contrast to most sugars, 1,6 linked polysaccharides have an extra bond in their inter-residue linkage, C5-C6, around which restricted rotations occur and this additional degree of freedom increases the mechanical complexity of these polymers. By comparing the computational results with the atomic force microscopy data we determine that forced rotations around the C5-C6 bond have a significant and different impact on the elasticity of alpha- and beta-linked polysaccharides. Beta-linkages of a polysaccharide pustulan force the rotation around the C5-C6 bonds and produce a Hookean-like elasticity but do not affect the conformation of the pyranose rings. However, alpha-linkages of dextran induce compound conformational transitions that include simultaneous rotations around the C5-C6 bonds and chair-boat transitions of the pyranose rings. These previously not-recognized transitions are responsible for the characteristic plateau in the force-extension relationship of dextran. 相似文献
20.
We investigated structural reorganization of two different kinds of molecular sheets derived from the cellulose II crystal using molecular dynamics (MD) simulations, in order to identify the initial structure of the cellulose crystal in the course of its regeneration process from solution. After a one-nanosecond simulation, the molecular sheet formed by van der Waals forces along the () crystal plane did not change its structure in an aqueous environment, while the other one formed by hydrogen bonds along the (1 1 0) crystal plane changed into a van der Waals-associated molecular sheet, such as the former. The two structures that were calculated showed substantial similarities such as the high occupancy of intramolecular hydrogen bonds between O3H and O5 of over 0.75, few intermolecular hydrogen bonds, and the high occurrence of hydrogen bonding with water. The convergence of the two structures into one denotes that the van der Waals-associated molecular sheet can be the initial structure of the cellulose crystal formed in solution. The main chain conformations were almost the same as those in the cellulose II crystal except for a −16° shift of φ (dihedral angle of O5-C1-O1-C4) and the gauche-gauche conformation of the hydroxymethyl side group appears probably due to its hydrogen bonding with water. These results suggest that the van der Waals-associated molecular sheet becomes stable in an aqueous environment with its hydrophobic inside and hydrophilic periphery. Contrary to this, a benzene environment preferred a hydrogen-bonded molecular sheet, which is expected to be the initial structure formed in benzene. 相似文献