首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine 3':5'-monophosphate(cyclic GMP)-dependent protein kinase which catalyzes the phosphorylation of histone was purified about 200-fold from the soluble fraction of pig lung by pH 5.5 precipitation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. The apparent Ka values for guanosine 3':5'-monophosphate and adenosine 3':5'-monophosphate were determined to be about 17 and 360 nM, respectively. Mg2+ was essential for the activity exhibiting biphasic stimulation behavior and neither Mn2+ nor Ca2+ could substitute for Mg2+. However, these divalent ions markedly inhibited the protein kinase activity stimulated by cyclic GMP in the presence of Mg2+.  相似文献   

2.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was assayed with calf thymus histone as substrate and partially purified from the soluble fraction of bovine cerebellum. The enzyme was selectively activated by cyclic GMP at lower concentrations; the Ka value for cyclic GMP was 1.7 times 10- minus 8 M whereas that for adenosine 3':5'-monophosphate (cyclic AMP) was 1.0 times 10- minus 6 M. The Km value for ATP was 1.0 times 10- minus 5 M. A high concentration of Mg-2+ (100 mM) was needed for maximum stimulation by cyclic GMP and maximum reaction rate. The pH optimum was 7.5 to 8.0. The isoelectric point was pH 5.7. The molecular weight was about 140,000 as estimated by gel filtration. The enzyme was unable to activate muscle glycogen phosphorylase kinase, and was clearly distinguishable from cyclic AMP-dependent protein kinase in kinetic and catalytic properties. Comparative data on cyclic GMP-dependent and cyclic AMP-dependent protein kinases in this tissue are presented.  相似文献   

3.
A protein acting as inhibitor of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.1.) activity was found in the ox retina tissue. An inhibitor from one tissue (ox retina) effectively cross-inhibited a phosphodiesterase from another tissue (rat brain), indicating a lack of tissue specificity. Kinetic analysis showed that inhibition was independent of the time of preliminary incubation of the inhibitor with enzyme but dependent on its concentration in the reaction mixture. An inhibitor decreased the V of the enzyme and had no effect on its Km for cyclic adenosine-3':5'-monophosphate. The inhibitory effect was more pronounced with cyclic adenosine-3':5'-monophosphate than with cyclic guanosine-3':5'-monophosphate used as substrates of the reaction. The extractable form of the phosphodiesterase of the retina rod outer segments was much more sensitive to the inhibitory action than the membrane-bound one. The binding of labeled cyclic adenosine-3':5'-monophosphate to the inhibitory protein was shown not to occur. The inhibitor was sensitive to trypsin treatment, indicating that it was a proten attempt was mode to purify the inhibitory factor. Gel filtration indicated that the inhibitor had a molecular weight of 38 000.  相似文献   

4.
Antibodies which completely inhibited the enzymatic activity of the protein kinase associated with virions of frog virus were obtained by immunization of rabbits with the purified enzyme. This inhibition provided a specific probe for the frog virus protein kinase, since this antiserum had no inhibitory effect on a variety of other protein kinases, including the activity of uninfected cells, or the protein kinase associated with vesicular stomatitis virus or vaccinia virus cultivated in the same cell line as frog virus. The frog virus protein kinase was characterized as a virus-specified protein on the basis of the following observations: (a) the virion protein kinase was antigenically distinct from essentially all of the protein kinase expressed in uninfected cells; (b) following infection by frog virus more than a 15-fold increase was detected in the specific activity of intracellular protein kinase and most of this activity was antigenically related to the virion enzyme; (c) when frog virus was grown in cells derived from widely different species, the antigenic and biochemical specificities of the virion protein kinase remained identical; and (d) screening of cells infected with different temperature-sensitive mutants of frog virus indicated that certain viral mutants failed to synthesize this protein kinase when cultivated at the nonpermissive temperature.  相似文献   

5.
Cytoplasmic and nuclear protein kinase activities from perfused rat liver have been studied in response to dibutyryl-adenosine cyclic 3':5'-monophosphate added at a concentration that stimulates hepatic gluconeogenesis (100 muM). Total nuclear protein kinase, as assayed using a mixed histone fraction as phosphate acceptor, is increased by 5-fold within 8 min of the addition of cyclic nucleotide to the perfusate. In contrast the total cytoplasmic protein kinase activity is decreased to 50% of the control value. The protein substrate specificity of the protein kinase that is present in the nucleus in response to dibutyryl-adenosine cyclic 3':5'-monophosphate stimulation is similar to that of cytoplasmic, adenosine cyclic 3':5'-monophosphate-dependent, protein kinase but is distinct from that of the enzyme(s) present in control nuclei. The predominant species to protein kinase from stimulated nuclei has a sedimentation constant of 3.9 S. This value is identical to that of the catalytic subunit of cytoplasmic adenosine 3':5'-monophosphate-dependent protein kinase. These data suggest that some of the effects of adenosine 3':5'-monophosphate on nuclear events may be mediated through its interaction with the inactive protein kinase holoenzyme in the cytoplasm and the subsequent redistribution of the active catalytic subunits generated by this interaction.  相似文献   

6.
Normal expression of a variety of hormonal effects which depend on cyclic AMP (adenosine 3':5'-monophosphate) requires the presence of glucocorticoids. Our hypothesis was that glucocorticoids control directly or indirectly the activity of cyclic-AMP-dependent protein kinase. This has been investigated in cultured hepatoma (HTC) cells in which N6,O2'-dibutyryladenosine 3':5'-monophosphate increases the activity of tyrosine transaminase only after glucocorticoid treatment. In these cells, we have determined the concentration and half-life of protein kinase, the sensitivity of this enzyme in vitro to cyclic AMP and to its thermostable protein inhibitor, the state of dissociation of protein kinase holoenzyme in vivo and its sensitivity, in the intact cell, to dibutyryladenosine 3':5'-monophosphate and to the inhibitor diamide, and we have also determined the concentration of endogenous thermostable protein inhibitor of protein kinase. None of these parameters were influenced by glucocorticoids under conditions where these hormones stimulate the activity of tyrosine transaminase and restore sensitivity to dibutyryladenosine 3':5'-monophosphate. It is concluded that the permissive action of glucocorticoids probably results from a control of cyclic-AMP-dependent processes exerted at a level beyond the protein kinase system.  相似文献   

7.
The mechanism of inhibition of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase was studied using a protein inhibitor isolated by a non-denaturing procedure from bovine heart. This protein inhibitor interacts with the catalytic subunit of protein kinase and binds to some substrates of the kinase. Protein kinase activity can also be inhibited by polyanions which, like the protein inhibitor, bind to basic substrates but do not bind to the catalytic subunit of protein kinase. Peptides such as L-lysyl-L-tyrosyl-L-threonine that resemble the phosphate accepting site of protein kinase substrates competitively inhibit phosphorylation of histone. Protein kinase activity can thus be inhibited in vitro by interaction of the protein inhibitor with substrates, and/or the catalytic subunit of the kinase, by competition of substrate analogs with "natural" substrates and by direct interaction of polyanions with basic protein substrates for the phosphotransferase reaction.  相似文献   

8.
Guanosine 3',5'-monophosphate (cyclic GMP)-dependent protein kinase purified from silkworm pupae reacts with rat liver ribosomal proteins when a stimulatory modulator (Kuo, W.N. & Kuo, J.F. 1976) J. Biol. Chem. 251, 4283-4286) is added to the reaction mixture. Judging from autoradiogram of the radioactive proteins separated by electrophoresis on sodium dodecyl sulfate-polyacrylamide slab gel, the protein kinase utilizes the same proteins as those phosphorylated by adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase. Fingerprint maps of the tryptic phosphopeptides of radioactive ribosomal proteins, which are phosphorylated by these two classes of protein kinases, are very similar. These results suggest that cyclic GMP-dependent protein kinase possesses an intrinsic activity that is similar to that of cyclic AMP-dependent protein kinase.  相似文献   

9.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was purified from the guinea pig fetal lung, a tissue shown to be the richest in this enzyme in all mammalian sources examined, and its general properties studied. The enzyme was purified 150-fold from crude extract by steps of pH 5.4 isoelectric precipitation, Sephadex G-200 filtration, hydroxylapatite treatment and DEAE-cellulose chromatography. The purified enzyme, free from contamination with adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase, had a specific activity at least equivalent to 600-fold purification of the enzyme from the adult lung. The pulmonary enzyme exhibited an absolute requirement of protein kinase modulator (prepared from various mammalian tissues with an exception of skeletal muscle) for its activity. Inhibitor protein of cyclic AMP-dependent protein kinase purified from rabbit skeletal muscle could not stimulate nor inhibit the cyclic GMP target enzyme, indicating the factors from mammalian sources regulating the two classes of protein kinases may not be the same. The enzyme had Ka values of 1.3 times 10(-8) and 3.3 times 10(-8) M for 8-bromo cyclic GMP and cyclic GMP, respectively, compared to 3.0 times 10(-6) M for cyclic AMP. Cyclic GMP lowered the Km of the enzyme for ATP from 6.3 times 10(-5) M in its absence to 2.1 times 10(-5) M in its presence, accompanied by an approximate doubling of the Vmax. The molecular weight of the enzyme (assayed by its catalytic and cyclic GMP-binding abilities) was estimated to be 123,000, corresponding to a sedimendation coefficient of 7.06 S, by means of sucrose density gradient ultracentrifugation. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity with optimal concentrations of about 30 and 0.7 mM, respectively. The maximal activity seen in the presence of Mg2+, however, was nearly twice as high as that seen in the presence of Co2+. Histones were generally effective substrates for the enzyme, whereas protamine, casein, phosvitin, phosphorylase kinase, and activator protein of phosphodiesterase were not. The cyclic GMP-dependent enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent enzyme in the presence of Mg2+.  相似文献   

10.
The cyclic 3',5'-AMP-binding protein was isolated from the muscle of Ascaris suum and purified to apparent homogeneity. It migrated as a protein with a relative Mr 54,000 on electrophoresis under denaturing conditions. On gel filtration columns it was eluted at a volume corresponding to a protein of Mr greater than 200,000 under conditions which kept the cyclic 3',5'-AMP-binding property intact. The purified catalytic subunit of protein kinase from Ascaris and the C subunit of cyclic 3',5'-AMP-dependent protein kinase from bovine heart were inhibited by the cyclic 3',5'-AMP-binding protein. Gel filtration studies indicated the formation of a stable protein complex between the protein kinase and the cyclic 3',5'-AMP-binding protein from Ascaris.  相似文献   

11.
Cyclic nucleotide dependent protein kinase has been extracted wiht Tris or Lubrol PX from purified rod outer segments (ROS) of bovine retina. The activity of the enzyme is unaffected by light but is stimulated by either cyclic guanosine 3',5'-monophosphate (cGMP) or cyclic adenosine 3',5'-monophosphate (cAMP). Most of the solubilized enzyme elutes from DEAE-cellulose with about 0.18 M NaCl (type II protein kinase). An endogenous 30,000 molecular weight protein of the soluble fraction of ROS as well as exogenous histone are phosphorylated by the protein kinase in a cyclic nucleotide dependent manner. The Tris-extracted enzyme can be reassociated in the presence of Mg2+ with ROS membranes that are depleted of protein kinase activity. The reassociated protein kinase is insensitive to exogenous cyclic nucleotides, and it catalyzes the phosphorylation of the membrane protein, bleached rhodopsin. While the soluble and membrane-associated protein kinases may be interchangeable, they appear to be modulated by different biological signals; soluble protein kinase activity is increased by cyclic nucleotides whereas membrane-bound activity is enhanced when rhodopsin is bleached by light.  相似文献   

12.
A cyclic adenosine 3',5'-monophosphate-dependent histone kinase (ATP: protein phosphotransferase, EC 2.7.1.37) was isolated from pig brain. The enzyme has been purified 1140-fold; it is homogeneous on polyacrylamide gel electrophoresis and gel filtration. The estimated molecular weight of the enzyme is 120 000. Histone kinase dissociates into a catalytic subunit and a regulatory one (molecular weights 40 000 and 90 000, respectively). The catalytic subunit has been obtained in homogeneous state as evidenced by sodium dodecylsulphate-polyacrylamide gel electrophoresis. At all purification steps, enzymatic activity is stimulated 5-fold by cyclic AMP. An apparent Km value for cyclic AMP is about 3.3 - 10- minus 7 M. In the presence of cyclic AMP(5 - 10- minus 6 M), the Km value for ATP and F1 histone were 1.2 - 10- minus five and 3 - 10- minus 5 M, respectively. Optimum pH value for histone kinase is 6.5, its isoelectric point is situated at pH 4.6. The purified enzyme displays high specificity for the lysine-rich and moderately lysine-rich histones F1, F2a2 and F2b. Arginine-rich histones and other known protein substrates for cyclic AMP-dependent protein kinases (casein, Escherichia coli RNA polymerase, etc.) are extremely poor substrates for this enzyme.  相似文献   

13.
M M Hosey  M Tao 《Biochemistry》1976,15(7):1561-1568
The autophosphorylation of rabbit and human erythrocyte membranes has been studied under various experimental conditions. The phosphopeptides of the erythocyte membranes were identified using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis followed by ratioautography. The pattern of phosphorylatiion of membrane components differs with respect to the phosphoryl donor used (ATP or GTP) and to the pH at which the reaction is carried out. Both species appear to contain at least two distinct membrane-bound protein kinases. The human erythrocyte membrane contains a cyclic adenosine 3'5'-monophosphate (cyclic AMP)-dependent protein kinase and several substrates for this kinase. Only ATP can be used as a phosphoryl donor for this kinase. In contrast, the rabbit erythrocyte membrane does not contain a cyclic AMP dependent protein kinase but does contain a kinase which utilizes only ATP as the phosphoryl donor and is specific for certain endogenous substrates at low pH. Both the human and rabbit erythrocyte membranes contain a kinase which utilizes GTP, perhaps also ATP, as the phosphoryl donor. The substrates of these kinases are similar in both species.  相似文献   

14.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) partially purified from silkworm pupae was selectively activated by cyclic GMP at lower concentrations. Nevertheless, the enzyme seemed to differ from adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) with respect to the mode of response to cyclic nucleotides. The catalytic activity and cyclic GMP-binding activity were not dissociated by cyclic GMP in a manner similar to that described for protein kinase A. The enzyme was not inhibited by regulatory subunit of protein kinase A nor by protein inhibitor. A sulfhydryl compound such as 2-mercaptoethanol or glutathione was essential for the activation by cyclic GMP, and an extraordinary high concentration of either Mg2+ (100 mM) or Mn2+ (25 mM) was needed for maximal stimulation by cyclic GMP. A polyamine such as spermine, spermidine, or putrescine could substitute partly for the cation. Kinetic analysis indicated that Km for ATP was decreased whereas Ka for cyclic GMP was increased significantly at high concentrations of the cation. The effect of the cation to decrease Km for ATP was not evident in the absence of a sulfhydryl compound. These characteristics of protein kinase G described above were not observed for protein kinase A which was obtained from the same organism.  相似文献   

15.
M E Dahmus  J Natzle 《Biochemistry》1977,16(9):1901-1908
A protein kinase, designed KII, has been purified 5000-fold from Novikoff ascites tumor cells. The purification procedure also allows for the purification of a second major protein kinase, designated KI, as well as RNA polymerase I and II. Purified KII has a sedimentation constant of 7.6 S and a Stokes radius of 39 A, suggesting a molecular weight of about 122000. Polyacrylamide gel electrophoresis of the enzyme in the presence of sodium dodecyl sulfate suggests the enzyme is composed of subunits of molecular weights 44 000, 40 000, and 26 000 present in a molar ratio of 1:1:2. Incubation of the enzyme alone in the presence of [gamma-32P]ATP results in the phosphorylation of the 26 000-dalton subunit. Protein kinase II actively phosphorylates phosvitin, casein, and nonhistone chromosomal proteins but does not phosphorylate basic proteins such as histones or protamine to an appreciable extent. Km values of 3.6 micron for ATP and 6.5 micronM for GTP were determined in the presence of 4mM Mg2+. The enzyme is neither stimulated by cyclic adenosine 3',5'-monophosphate or cyclic guanosine 3', 5'-monophosphate nor inhibited by the regulatory subunit of rabbit muscle protein kinase. Its activity is stimulated by KCl at concentrations below 0.2 M and inhibited by higher concentrations.  相似文献   

16.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

17.
18.
Phosphorylation of Animal Virus Proteins by a Virion Protein Kinase   总被引:12,自引:11,他引:1       下载免费PDF全文
Compared with several other enveloped viruses, purified virions of frog virus 3 contained a relatively high activity of a protein kinase which catalyzed the phosphorylation of endogenous polypeptides or added substrate proteins. Virions also contained a phosphoprotein phosphatase activity which released phosphate covalently linked to proteins. It was possible to select reaction conditions where turnover of protein phosphoesters was minimal, as the phosphatase required Mn(2+) ions for activity whereas the protein kinase was active in the presence of Mg(2+) ions. Electrophoretic studies in polyacrylamide gels containing sodium dodecyl sulfate indicated that at least 10 of the virion polypeptides were phosphorylated in the in vitro protein kinase reaction. Characterization of these phosphoproteins demonstrated that the phosphate was incorporated predominantly in a phosphoester linkage with serine residues. The protein kinase was solubilized by disrupting purified virions with a nonionic detergent in a high-ionic-strength buffer and was separated from many of the virion substrate proteins by zonal centrifugation in glycerol gradients. The partially purified protein kinase would phosphorylate polypeptides of many different animal viruses, and maximal activity was not dependent on added cyclic nucleotides. These properties distinguished the virion protein kinase from a well characterized cyclic AMP-dependent protein kinase which phosphorylated viral proteins only to a small extent.  相似文献   

19.
The mitochondria of liver of Yoshida ascites tumour-bearing rats contained two forms of protein kinase distinguishable on the basis of their kinetic properties, substrate specificity and responses to cyclic adenosine 3',5'-monophosphate (cAMP). One of these (kinase I) was activated 2-3 fold by cAMP while the other form (kinase II) was insensitive to the action of cAMP. Kinase I which was selective towards histone F1 as substrate was obtained as a homogeneous preparation and was observed to have a molecular weight of 170 000 by Sephadex G-150 gel filtration. Protein kinase II appeared to be a smaller protein with molecular weight of 54 000 and was specific towards acidic proteins namely casein and phosvitin. Protein kinases isolated from liver mitochondria of normal rats showed variations in respect to elution profile of DEAE-cellulose and electrophoretic mobility. The preparation corresponding to kinase I did not show stimulatory responses to cAMP.  相似文献   

20.
Graded doses of ochratoxin A incorporated into the diet (0, 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/g) of broiler chickens significantly (P < 0.05) inhibited activity of protein kinase, the initiator enzyme of the glycogen phosphorylase system, in the livers at all dose levels. Only the highest dose, 8.0 micrograms/g, significantly reduced the total activity of phosphorylase kinase, which is activated by protein kinase. The total activity of phosphorylase, which is activated by phosphorylase kinase, was unaltered by ochratoxin A at any level. Additon of ochratoxin A to liver extracts control birds inhibited protein kinase but not phosphorylase kinase. When added to extracts of livers from control birds, cyclic adenosine 3',5'-monophosphate stimulated protein kinase but not phosphorylase kinase. The cyclic adenosine 3',5'-monophosphate had no effect when added to extracts from birds fed ochratoxin A. These results suggest that ochratoxin A affects primarily the cyclic adenosine 3',5'-monophosphate-dependent protein kinase which initiates the enzymatic cascade leading to glycogenolysis. Furthermore, these results conform an earlier assignment on morphological criteria of the glycogenosis of ochratoxicosis as a type X glycogen storage disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号