首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Proximal mouse Chromosome (Chr) 11 shares regions of orthology with the candidate gene region for the imprinting growth disorder Silver-Russell syndrome (SRS) on human Chr 7p. It has previously been shown that mice with two maternal or two paternal copies (duplications, Dp) of proximal Chr 11 exhibit reciprocal growth phenotypes. Those with two paternal copies show fetal and placental overgrowth, while those with two maternal copies are growth retarded. The growth retardation observed in the latter is reminiscent of the intrauterine growth restriction (IUGR) observed in SRS patients with maternal uniparental disomy for Chr 7 (mUPD7). We have carried out a methylation-sensitive representational difference analysis (Me-RDA) screen to look for regions of differential methylation (DMRs) associated with imprinted genes. For these experiments, we have used mouse embryos with uniparental duplications of Chrs 11 and 7 proximal to the breakpoint of the reciprocal translocation T(7;11)40Ad. Two previously known imprinted loci associated with paternal allele hypomethylation were recovered on proximal mouse Chr 11, U2af1-rs1 and Meg1/Grb10. These two genes map 15 cM apart, so it seems likely that they are within separate imprinted domains that do not contain additional DMRs. The known imprinted gene Peg3, located on mouse proximal Chr 7, was also detected in our screen. The finding that Peg3 was differentially methylated in embryos with uniparental inheritance of proximal Chr 7 confirms that Peg3 is located proximal to the breakpoint of T40Ad in G-band 7A2. Because GRB10 has previously been reported to be a candidate gene for SRS, we analysed 22 patients for epimutations of the GRB10 differentially methylated region that could lead to the altered expression of this gene. No such mutations were found.  相似文献   

3.
4.
We have established a systematic screen for imprinted genes using a subtraction-hybridization method with day 8.5 fertilized and parthenogenetic embryos. Two novel imprinted genes, Peg1/Mest and Peg3, were identified previously by this method, along with the two known imprinted genes, Igf2 and Snrpn. Recently three additional candidate imprinted genes, Peg5-7 , were detected and Peg5 is analyzed further in this study. The cDNA sequence of Peg5 is identical to Neuronatin, a gene recently reported to be expressed mainly in the brain. Two novel spliced forms were detected with some additional sequence in the middle of the known Neuronatin sequences. All alternatively spliced forms of Peg5 were expressed only from the paternal allele, confirmed using DNA polymorphism in a subinterspecific cross. Peg5/Neuronatin maps to sub-distal Chr 2, proximal to the previously established imprinted region where imprinted genes cause abnormal shape and behavior in neonates.  相似文献   

5.
6.
7.
Paternally expressed imprinted genes (Pegs) were systematically screened by comparing gene expression profiles of parthenogenetic and normal fertilized embryos using an oligonucleotide array. A novel imprinted gene, Peg12/Frat3, was identified along with 10 previously known Pegs. Peg12/Frat3 is expressed primarily in embryonic stages and might be a positive regulator of the Wnt signaling pathway. It locates next to the Zfp127 imprinted gene in the mouse 7C region, which has syntenic homology to the human Prader-Willi syndrome region on chromosome 15q11-q13, indicating that this imprinted region extends to the telomeric side in the mouse.  相似文献   

8.
Imprinted genes are expressed from one allele according to their parent of origin, and many are essential to mammalian embryogenesis. Here we show that the epsilon-sarcoglycan gene (Sgce) and Zac1 (Lot1) are both paternally expressed imprinted genes. They were identified in a subtractive screen for imprinted genes using a cDNA library made from novel parthenogenetic and wild-type fibroblast lines. Sgce is a component of the dystrophin-sarcoglycan complex, Zac1 is a nuclear protein inducing growth arrest and/or apoptosis, and Zac1 is a potential tumor suppressor gene. Sgce and Zac1 are expressed predominantly from their paternal alleles in all adult mouse tissues, except that Zac1 is biallelic in the liver and Sgce is weakly expressed from the maternal allele in the brain. Sgce and Zac1 are broadly expressed in embryos, with Zac1 being highly expressed in the liver primordium, the umbilical region, and the neural tube. Sgce, however, is strongly expressed in the allantoic region on day 9.5 but becomes more widely expressed throughout the embryo by day 11.5. Sgce is located at the proximal end of mouse chromosome 6 and is a candidate gene for embryonic lethality associated with uniparental maternal inheritance of this region. Zac1 maps to the proximal region of chromosome 10, identifying a new imprinted locus in the mouse, homologous with human chromosome 6q24-q25. In humans, unipaternal disomy for this region is associated with fetal growth retardation and transient neonatal diabetes mellitus. In addition, loss of expression of ZAC has been described for a number of breast and ovarian carcinomas, suggesting that ZAC is a potential tumor suppressor gene.  相似文献   

9.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

10.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192-196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1-q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

11.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

12.
A Hershko  A Razin  R Shemer 《Gene》1999,234(2):323-327
The Zfp127 gene is located on mouse chromosome 7 in an imprinted region that is homologous to the 2-Mb Prader-Willi and Angelman Syndromes region on human chromosome 15q11-q13. Here, we show that the gene is differentially methylated, the maternal allele being methylated and the paternal allele being unmethylated. This maternal methylation is established promptly after fertilization prior to syngamy. We also provide data that demonstrate the significance of methylation in the paternal expression of the gene. The expression of the Zfp127 gene in methyltransferase-deficient mice is significantly higher, suggesting that the gene is biallelically expressed in these mice. The data presented here will help to understand the mechanism by which the monoallelic expression of the entire 2-Mb Prader-Willi and Angelman Syndrome region is regulated.  相似文献   

13.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

14.
Previous studies (Beechey, 2000) have shown that mouse proximal chromosome (Chr) 6 has two imprinting regions. An early embryonic lethality is associated with two maternal copies of the more proximal imprinting region, while mice with two maternal copies of the sub-proximal imprinting region are growth retarded at birth, the weight reduction remaining similar to adulthood. No detectable postnatal imprinting phenotype was seen in these earlier studies with two paternal copies of either region. The sub-proximal imprinting region locates distal to the T77H reciprocal translocation breakpoint in G-band 6A3.2 and results reported here show that it does not extend beyond the breakpoint of the more distal T6Ad translocation in 6C2. It has been confirmed that the postnatal growth retardation observed with two maternal copies of the sub-proximal region is established in utero, although placental size was normal. A new finding is that 16.5-18.5-dpc embryos, with two paternal copies of the sub-proximal imprinting region, were larger than their normal sibs, although placental size was normal. As no postnatal growth differences have been observed in these mice, the fetal overgrowth must normalize by birth. The imprinted genes Peg1/Mest, Copg2, Copg2as and Mit1/Lb9 map to the sub-proximal imprinting region and are thus candidates for the observed imprinting phenotypes. Another candidate is the recently reported imprinted gene Nap1l5. Expression studies of Nap1l5 in mice with two maternal or two paternal copies of different regions of Chr 6 have demonstrated that the gene locates within the sub-proximal imprinting region. FISH has mapped Nap1l5 to G-band 6C1, within the sub-proximal imprinting region but several G-bands distal to the Peg1/Mest cluster. This location, and the 30-Mb separation of these loci on the sequence map, makes it probable that Nap1l5 defines a new imprinting domain within the currently defined sub-proximal imprinting region.  相似文献   

15.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

16.
17.
18.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

19.
The imprinted region on mouse distal chromosome 12 covers about 1 Mb and contains at least three paternally expressed genes (Pegs: Peg9/Dlk1, Peg11/Rtl1, and Dio3) and four maternally expressed genes (Megs: Meg3/Gtl2, antiPeg11/antiRlt1, Meg8/Rian, and Meg9/Mirg). Gtl2(lacZ) (Gene trap locus 2) mice have a transgene (TG) insertion 2.3 kb upstream from the Meg3/Gtl2 promoter and show about 40% growth retardation when the TG-inserted allele is paternally derived. Quantitative RT-PCR experiments showed that the expression levels of Pegs in this region were reduced below 50%. These results are consistent with the observed phenotype in Gtl2lacZ mice, because at least two Pegs(Peg9/Dlk1 and Dio3) have growth-promoting effects. The aberrant induction of Megs from silent paternal alleles was also observed in association with changes in the DNA methylation level of a differentially methylated region (DMR) located around Meg3/Gtl2 exon 1. Interestingly, a 60 approximately 80% reduction in all Megs was observed when the TG was maternally derived, although the pups showed no apparent growth or morphological abnormalities. Therefore, the paternal or maternal inheritance of the TG results in the down-regulation in cis of either Pegs or Megs, respectively, suggesting that the TG insertion influences the mechanism regulating the entire imprinted region.  相似文献   

20.
Peg3 is an imprinted gene exclusively expressed from the paternal allele. It encodes a C2H2 type zinc-finger protein and is involved in maternal behavior. It is important for TNF-NFkB signaling and p53-mediated apoptosis. To investigate the imprinting mechanism and gene expression of Peg3 and its neighboring gene(s), we used a 120 kb Peg3-containing BAC clone to generate transgenic mice. The BAC clone contains 20 kb of 5 and 80 kb of 3 flanking DNA, and we obtained three transgenic lines. In one of the lines harboring one copy of the transgene, Peg3 was imprinted properly. In the other two lines, Peg3 was expressed upon both maternal and paternal transmission. Imprinted expression was linked to the differential methylation of a region (DMR) upstream of the Peg3 gene. A second, maternally expressed gene, Zim1, present on the transgene was expressed irrespective of parental inheritance in all lines. These data suggest that, similar to other imprinted genes within domains, Peg3 and Zim1 are regulated by one or more elements lying at a distance from the genes. The imprinting of Peg3 seen in one line may reflect the presence of a responder sequence. Concerning the expression of the Peg3 transgene, we detected appropriate expression in the adult brain. However, this was not sufficient to rescue the maternal behavior phenotype seen in Peg3 deficient animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号