首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A (13)--D-glucan 3-glucanonydrolase (EC 3.2.1.39) of apparent M r 32 000, designated GII, has been purified from germinated barley grain and characterized. The isoenzyme is resolved from a previously purified isoenzyme (GI) on the basis of differences in their isoelectric points; (13)--glucanases GI and GII have pI values of 8.6 and 10.0, respectively. Comparison of the sequences of their 40 NH2-terminal amino acids reveals 68% positional identity. A 1265 nucleotide pair cDNA encoding (13)--glucanase isoenzyme GII has been isolated from a library prepared with mRNA of 2-day germinated barley scutella. Nucleotide sequence analysis of the cDNA has enabled the complete primary structure of the 306 amino acid (13)--glucanase to be deduced, together with that of a putative NH2-terminal signal peptide of 28 amino acid residues. The (13)--glucanase cDNA is characterized by a high (G+C) content, which reflects a strong bias for the use of G or C in the wobble base position of codons. The amino acid sequence of the (13)--glucanase shows highly conserved internal domains and 52% overall positional identity with barley (13, 14)--glucanase isoenzyme EII, an enzyme of related but quite distinct substrate specificity. Thus, the (13)--glucanases, which may provide a degree of protection against microbial invasion of germinated barley grain through their ability to degrade fungal cell wall polysaccharides, appear to share a common evolutionary origin with the (13, 14)--glucanases, which function to depolymerize endosperm cell walls in the germinated grain.  相似文献   

2.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   

3.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   

4.
An efficient total synthesis of a cholinergic neuron-specific ganglioside GT1a (IV3NeuAcIII6NeuAcII3NeuAc-GgOse4Cer) is described. The suitably protected sialyl-(26)-gangliotriose (III6NeuAc-GgOse3) derivative was glycosylated with the phenyl 2-thioglycoside of sialic acid in the presence of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) in acetonitrile medium, giving the disialogangliotriose (III6NeuAcII3NeuAc-GgOse3) derivative which contains both sialyl-(26)-GalNAc and sialyl-(23)-Gal structures (Route I). This pentasaccharide was efficiently synthesized also by the coupling of (methyl 5-acetamido-4,7,8,9-tetra--acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosylonate)-(26)-2-deoxy-3,4--isopropylidene-2-phthalimido-D-galactopyranosyl trichloroacetimidate with 2-(trimethylsilyl)ethyl (methyl 5-acetamido-4,7,8,9-tetra--acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosylonate)-(23)-(2,6-di--benzyl--D-galactopyranosyl)-(14)-2,3,6-tri--benzyl--D-glucopyranoside, followed by conversion of the phthalimido group to the acetamido group (Route II). -Deisopropylidenation and further glycosylation with methyl (methyl 5-acetamido-4,7,8,9-tetra--acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosylonate)-(23)-2,4,6-tri--benzoyl-1-thio--D-galactopyranoside, promoted by dimethyl(methylthio)sulfonium triflate (DMTST), gave the desired trisialogangliotetraose (IV3NeuAcIII6NeuAcII3NeuAc-GgOse4) derivative, which was converted stepwise into the title ganglioside GT1a by the introduction of the ceramide part and then complete deprotection. The ganglioside obtained was shown to be identical with the native GT1a on TLC-immunostaining.  相似文献   

5.
The gene encoding 5 3 exonuclease domain-deleted Tfi DNA polymerase, named 5 3 Exo Tfi fragment, from Thermus filiformis was expressed in Escherichia coli under the control of the tac promoter on a high-copy plasmid, pJR. The expressed enzyme was purified 27-fold with a 19% yield and a specific activity of 2621 U mg–1 protein. The 5 3 exonuclease domain of Tfi DNA polymerase was removed without significant effect on enzyme activity and stability. PCR conditions for the 5 3 Exo Tfi fragment were more tolerant to the buffer composition as compared to the full-length enzyme.  相似文献   

6.
Summary DNA sequencing was used to determine the specific types of DNA base changes induced following in vivo exposure of Escherichia coli to the ethylating agent N-ethyl-N-nitro-N-nitrosoguanidine (ENNG) and the hydroxyethylating agent 1-(2-hydroxyethyl)-1-nitrosourea (HENU) using the xanthine guanine phosphoribosyltransferase (gpt) gene as the genetic target. We observed that 22/30 of the ENNG-induced mutations were GCAT transitions, 4/30 were ATGC transitions, 3/30 were ATTA transversions, and 1/30 was an ATCG transversion. We observed that 37/40 HENU-induced mutations were GCAT transitions and that the remaining 3/40 were ATGC transitions. A majority of the GCAT transitions induced by ENNG and HENU (68% and 73%, respectively) occurred at the second guanine of the sequence 5-GG(A or T)-3; this sequence specificity was similar to that previously seen with the alkylating agents N-methyl- and N-ethyl-N-nitrosourea (MNU and ENU) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG). A DNA strand preference for the GA changes (antisense strand), previously noted for MNU, ENU, and MNNG, was observed following exposure to HENU and ENNG. The ATGC transitions induced by ENNG, HENU, and ENU also exhibit a sequence specificity with 13/13 mutations occurring at the T of the sequence 5-NTC-3. A strand preference was not apparent for these mutations.  相似文献   

7.
Gibeaut DM  Pauly M  Bacic A  Fincher GB 《Planta》2005,221(5):729-738
Cell wall polysaccharides in developing barley coleoptiles were examined using acetic acid–nitric acid extraction, alditol acetate and methylation analyses and enzymatic digestion. The coleoptile cell wall from imbibed grain was rich in pectic polysaccharides (30 mol%), arabinoxylan (25 mol%), cellulose (25 mol%) and xyloglucan (6 mol%), but contained only low levels of (13,14)--D-glucan (1 mol%). During 5 days of coleoptile growth, pectic polysaccharides decreased steadily to about 9 mol%, while (13,14)--D-glucan increased to 10 mol%. Following the cessation of growth of the coleoptiles at about 5 days, (13,14)--D-glucan content rapidly decreased to 1 mol%. The cellulose content of the walls remained at about 35–40 mol% throughout coleoptile growth. Similarly, arabinoxylan content remained essentially constant at 25–30 mol% during growth, although the ratio of substituted to unsubstituted 4-linked xylosyl units decreased from about 4:1 to 1:1. Xyloglucan content ranged from 6 mol% to 10 mol% and the oligosaccharide profile determined using a xyloglucan-specific endoglucanase and MALDI-TOF mass spectrometry indicated that the oligosaccharides XXGG and XXGGG were the principal components, with one and two acetyl groups, respectively, Thus, dramatic changes in wall composition were detected during the growth of barley coleoptiles, both with respect to the relative abundance of individual wall constituents and to the fine structure of the arabinoxylans.  相似文献   

8.
Summary We have studied the reactions between adenosine 5-phosphorimidazolide and 9-(2-amino-2-deoxyxylofuranosyl) adenine (I) or 3-methylamino-3-deoxyadenosine (II), both with and without a poly (U) template. We find that both amino compounds react much more rapidly than does adenosine, in the absence of a template. The rate of reaction is greatly enhanced by a poly (U) template in the case of I, but the enhancement is slight in the case of II.Abbreviations A adenosine - xylo ANH2 9-(2-amino-2-deoxy--D-xylofuranosyl) adenine - ANHMe 3-methylamino-3-deoxyadenosine - ImpA adenosine 5-phosphorimidazolide - A3 pA adenylyl-[35]-adenosine - A2 pA adenylyl-[25]-adenosine - UNPA adenylyl-[52]-2-amino-2-deoxyuridine - xylo ANPA 9-[adenylyl-(52)-2-amino-2-deoxy--D-xylofuranosyl]adenine - A(NMe)pA adenylyl-[53]-3-methylamino-3-deoxyadenosine - pA adenosine 5phosphate - AppA P1, P2-diadenosine 5pyrophosphate - (pA)n n = 2, 3 [2-5]-linked oligomers of pA - A2 pA2 pA [2-5]-linked trinucleoside diphosphate of A - poly (U) polyuridylic acid  相似文献   

9.
Summary Sirofluor, a chemically defined fluorochrome from aniline blue in aqueous unbuffered solutions, complexes with isolated (1 3)--glucans, but not (1 4)--glucans, after embedding in JB-4 resin and sectioning. Under these conditions, callose deposits in plant tissues give a brilliant yellow fluorescence with essentially no background fluorescence.  相似文献   

10.
Kim KH  Kim YO  Ko BS  Youn HJ  Lee DS 《Biotechnology letters》2004,26(22):1749-1755
An endo--(13),(14)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo--(13),(14)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis, transformed with the recombinant plasmid pBLC771, produced an extracellular endo--(13),(14)-glucanase that was 130 times (7176 mU ml–1) more active than that of the gene donor cells (55 mU ml–1), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml–1) more active than that of the gene donor cells. M r of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble -glucan hydrolyzed by over-produced endo--(13),(14)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.  相似文献   

11.
1,4 galactosyltransferase 1 ( 1,4GT1) synthesizes Gal 14GlcNAc groups in N-linked sugar chains of animal glycoproteins, which have been demonstrated to play an important role in many biological events, including sperm-egg interaction, cell migration and mammalian embryonic development. In this study, the mRNA level of 1,4GT1 was found to increase greatly during the 7721 hepatocarcinoma cells apoptosis induced by cycloheximide. Ricinus Communis Agglutinin-I staining indicated generous increase of Gal 14GlcNAc groups during apoptosis. Further study showed that the 7721 hepatocarcinoma cells transiently transfected with 1,4GT1 were more susceptible to the apoptosis induced by cycloheximide. The increased susceptibility was in accordance to the transfection concentration of 1,4GT1, which also led to the increased Gal 14GlcNAc groups on the transfected cell surface. All the observations suggested that 1,4GT1 and Gal 14GlcNAc groups might be associated with the apoptosis of human hepatocarcinoma cells.  相似文献   

12.
Kinetics and binding studies of RNase A and its natural polymeric substrate (RNA), as well as the natural mixture of free 3-ribonucleotides, were performed by difference spectrophotometry. The obtained kinetic saturation curve, with an anomalous nonhyperbolic shape and a distinct transition point, showed the interchange between the two conformational forms of the enzyme. This occurred in a narrow range of substrate concentration. At low substrate concentration, in spite of the existence of one catalytic cleft, RNase A behaves as a cooperative system, perhaps due to the interactions among the four cooperative binding subsites in the active cleft. At high substrate concentration, the conformational change did occur and was accompanied by a decrease in cooperativity and increment of the catalytic constant. The multiphasic shape of the binding curve, which, in the presence of the enzyme, produced 3-ribonucleotides (as the ligand molecules), shows four binding subsites. The first three subsites are specific for the attachment of phosphate, ribose, and base moieties belonging to the first bound 3-ribonucleotide in the direction of 3-phosphate ribose base-5. The fourth subsite relates to the second phosphate group of the second bound 3-ribonucleotide. The binding direction also converts to 5-phosphate ribose base-3 for the ribonucleotide monomers in the RNA structure.  相似文献   

13.
The main polysaccharide component of the thickened cell walls in the storage parenchyma of Lupinus angustifolius L. cotyledons is a linear (1 4)--linked d-galactan, which is mobilised after germination (L.A. Crawshaw and J.S.G Reid, 1984, Planta 160, 449–454). The isolation from the germinated cotyledons of a -d-galactosidase or exo-(1 4)--d-galactanase with a high specificity for the lupin galactan is described. The enzyme, purified using diethylaminoethyl-cellulose, carboxymethyl-cellulose and affinity chromatography on lactose-agarose, gave two bands (major 60 kDa, minor 45 kDa) on sodium dodecyl sulphate-gel electrophoresis, and two similar bands on isoelectric focusing (major, pI 7.0, minor pI 6.7, both apparently possessing enzyme activity). The minor component cross-reacted with an antiserum raised against, and affinity-purified on, the major band. Both components had a common N-terminal sequence. The minor component was probably a degradation product of the major one. The enzyme had limited -galactosidase action, catalysing the hydrolysis of p-nitrophenyl--d-galactopyranoside and (1 4)- and (1 6)--linked galactobioses. Lactose [-d-galactopyranosyl-(1 4)-d-glucose] was hydrolysed only very slowly and methyl--d-galactopyranoside not at all. Lupin galactan was hydrolysed rapidly and extensively to galactose, whereas other cell-wall polysaccharides (xyloglucan and arabinogalactan) with terminal non-reducing -d-galactopyranosyl residues were not substrates. A linear (1 4)--linked galactopentaose was hydrolysed efficiently to the tetraose plus galactose, but further sequential removals of galactose to give the tetraose and lower homologues occurred more slowly. Galactose, -galactonolactone and Cu+2 were inhibitory. No endo--d-galactanase activity was detected in lupin cotyledonary extracts, whereas exo-galactanase activity varied pari passu with galactan mobilisation. Exo-galactanase protein was detected, by Western immunoblotting of cotyledon extracts, just before the activity could be assayed and then increased and decreased in step with the enzyme activity. The exo-galactanase is clearly a key enzyme in galactan mobilisation and may be the sole activity involved in depolymerising the dominant (1 4)--galactan component of the cell wall.Abbreviations CM carboxymethyl - DEAE diethylaminoethyl - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TLC thin-layer chromatography We wish to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the award of a studentship to M.S. Buckeridge, and the Government of São Paulo State, Brazil for granting him leave of absence. We are grateful to Dr. Amanda Heyller (Unilever Research Laboratory, Colworth House, Bedford, UK) for N-terminal sequence determinations, to Dr. Stuart Wilson (Stirling) for preparing gelatin SDS-gels and to Cristina Fanutti (Stirling) for purifying the xyloglucan oligosaccharide.  相似文献   

14.
Summary Soluble lead salts and a number of lead-containing minerals catalyze the formation of oligonucleotides from nucleoside 5-phosphorimidazolides. The effectiveness of lead compounds correlates strongly with their solubility. Under optimal conditions we were able to obtain 18% of pentamer and higher oligomers from ImpA. Reactions involving ImpU gave smaller yields.Abbreviations A adenosine - U uridine - Im imidazole - MeIm 1-methyl-imidazole - EDTA ethylenediaminetetraacetic acid - pA adenosine 5-phosphate - pU uridine 5-phosphate - Ap adenosine cyclic 2:3-phosphate - ATP adenosine 5-triphosphate - AppA P1,P2-diadenosine 5-diphosphate - pNp (N = A,U) nucleotide 2(3), 5-diphosphate - ImpA adenosine 5-phosphoreimidazolide - ImpU uridine 5-phosphorimidazolide - A 2pA adenylyl-[25]-adenosine - A 3pA adenylyl-[35]-adenosine - pA 2pA 5-phospho-adenylyl-[25]-adenosine - pA 3pA 5-phospho-adenylyl-[35]-adenosine - pUpU 5-phospho-uridylyl-uridine - pApU 5-phospho-adenylyl-uridine - pUpA 5-phospho-uridylyladenine - (pA)n (n, 2,3,4,) oligoadenylates with 5 terminal phosphate - ImpApA 5-phosphorimidazolide of adenylyl adenosine - (pA) 5+ pentamer and higher oligoadenylates with 5 terminal phosphate - (Ap)nA (n = 2,3,4) oligoadenylates without terminal phosphates In the following we do not specify the nature of the internucleotide linkageIn the following we do not specify the nature of the internucleotide linkage  相似文献   

15.
The location of the (13)--glucan, callose, in the walls of pollen tubes in the style of Nicotiana alata Link et Otto was studied using specific monoclonal antibodies. The antibodies were raised against a laminarinhaemocyanin conjugate. One antibody selected for further characterization was specific for (13)--glucans and showed no binding activity against either a cellopentaose-bovine serum albumin (BSA) conjugate or a (13, 14)--glucan-BSA conjugate. Binding was inhibited by (13)--oligoglucosides (DP, 3–6) with maximum competition being shown by laminaripentaose and laminarihexaose, indicating that the epitope included at least five (13)--linked glucopyranose residues. The monoclonal antibody was determined to have an affinity constant for laminarihexaose of 2.7. 104M–1. When used with a second-stage gold-labelled, rabbit anti-mouse antibody, the monoclonal antibody probe specifically located the (13)--glucan in the inner wall layer of thin sections of the N. alata pollen tubes.Abbreviations BSA bovine serum albumin - PBS phosphate-buffered saline - ELISA enzyme linked immunosorbent assay - DP degree of polymerization - PVC polyvinyl chloride P.J.M. is an Australian Postdoctoral Research Fellow. We wish to thank Joan Hoogenraad for her technical assistance with the tissue culture, and Althea Wright for her assistance in the preparation of this paper.  相似文献   

16.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

17.
Summary Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as pnApA in excellent yield (80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5-phosphorimidazolides.Abbreviations P3! trimetaphosphate - A adenosine - U uridine - EDTA ethylenediaminetetraacetic acid - Ap adenosine 2(3)-phosphate - Ap! adenosine cyclic 2:3-phosphate - pA adenosine 5-phosphate - pA2p adenosine 2, 5-diphosphate - pA3p adenosine 3, 5-diphosphate - pAp! 5-phospho-adenosine cyclic 2:3-phosphate - ATP adenosine 5-triphosphate - ImpA adenosine 5-phosphorimidazolide - A2pA adenylyl-[25]-adenosine - A3pA adenylyl-[35]-adenosine - A2pU adenylyl-[25]-uridine - A3pU adenylyl-[35]-uridine - pA2pA 5-phosphoadenylyl-[25]-adenosine - pA3pA 5-phospho-adenylyl-[35]-adenosine - pA2pU 5-phospho-adenylyl-[25]-uridine - pA3pU 5-phospho-adenylyl-[35]-uridine - pApN (N= A, U) 5-phosphate of a dinucleoside phosphate - pnApN (N = A, U; n = 2, 3, 4.) 5-polyphosphate of a dinucleoside phosphate - ImpA2pA imidazolide of pA2pA - ImpA3pA imidazolide of pA3pA - ImpA2pU imidazolide of pA2pU - ImpA3pU imidazolide of pA3pU - ImpApN imidazolide of pApN  相似文献   

18.
P. Bucheli  M. Dürr  A. J. Buchala  H. Meier 《Planta》1985,166(4):530-536
Cotton fibres possess several -glucanase activities which appear to be associated with the cell wall, but which can be partially solubilised in buffers. The main activity detected was that of an exo-(13)--d-glucanase (EC 3.2.1.58) but which also had the characteristics of a -glucosidase (EC 3.2.1.21). Endo-(13)--d-glucanase activity (EC 3.2.1.39) and much lower levels of (14)--d-glucanase activity were also detected. The exo-(13)--glucanase showed a maximum late on (40 days post-anthesis) in the development of the fibres, whereas the endo-(13)--glucanase activity remained constant throughout fibre development. The -glucanase complex associated with the cotton-fibre cell wall also functions as a transglucosylase introducing, inter alia, (16)--glucosyl linkages into the disaccharide cellobiose to give the trisaccharide 4-O--gentiobiosylglucose.Abbreviations CMC carboxymethylcellulose - ONPG o-nitrophenyl--d-glucopyranoside - TLC thin-layer chromatography Presented at the Third Cell Wall Meeting held in Fribourg in 1984  相似文献   

19.
Krutyakov  V. M. 《Molecular Biology》2004,38(5):696-705
Original and published data on the antimutagenic role of autonomous 3 5-exonucleases (AE) are analyzed. AE are not bound covalently to DNA polymerases but are often involved in replicative complexes. AE overproduction in bacterial cells is accompanied by a sharp suppression of mutagenesis, whereas AE inactivation in bacteria and higher fungi results in the increase in mutation rates by two to three orders of magnitude. The combined action of AE and DNA polymerases substantially improves the fidelity of their functioning in vitro. The fidelity of nuclease-free DNA polymerases and increases by two to three orders of magnitude in the presence of AE. The fidelity of moderately processive DNA polymerase I increases by two orders of magnitude, and that of highly processive DNA polymerase increases by a factor of 5–10, although both these polymerases possess their own 3 5-exonucleolytic activity. In biochemical experiments, AE was shown to participate directly in the correction of errors made by DNA polymerase I. The presence of AE in multienzyme DNA polymerase complexes increases their fidelity by a factor of 5–10. A model of extrinsic proofreading by AE in DNA biosynthesis is proposed. An investigation of thirty objects from all three kingdoms of life (from archaea and bacteria to mammals, including humans) has shown that AE account for 30–90% of the total cellular 3 5-exonucleolytic activity. Therefore, AE increase significantly the intracellular ratio of 3 5-exonuclease to DNA polymerase activities in a wide phylogenetic variety of species, which always leads to the increasing fidelity of DNA biosynthesis.  相似文献   

20.
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号