首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fetal thymus organ culture system has been used to monitor the influence of interleukin 1 (IL 1) on the production of functional T cells as assessed by cell recoveries and MLC assays. We had shown earlier that the addition of monoclonal anti-I-A antibody inhibited the development of functional T cells as well as the expression of Ia on nonlymphoid cells recovered from fetal thymus organ cultures. The addition of purified recombinant IL 1 to anti-I-A-treated cultures reversed the inhibition of T cell growth induced by anti-I-A. IL 1 also induced the reexpression of Ia on the surfaces of nonlymphoid cells that could be recovered from the cultures. The "rescue" effect of IL 1 on anti-I-A-treated fetal thymus lobes was manifested in spite of the fact that the addition of IL 1 to untreated cultures had little effect on T cell development. To determine if IL 1 had a physiologic role in the development of the fetal thymus in organ culture, highly specific goat antibodies to IL 1 were added to organ cultures. These antibodies inhibited the development of T cells in organ cultures as determined by cell recovery and MLC reactivity. These results are consistent with the conclusion that IL 1 is an important mediator in the growth and development of functional T cells in the fetal thymus.  相似文献   

2.
Bone marrow cells from autoimmune-prone New Zealand Black (NZB) mice are less efficient at colonizing fetal thymic lobes than cells from normal strains. This study demonstrates that the reduced capacity of NZB bone marrow cells to repopulate the thymus does not result from their inability to migrate to or enter the thymus. Rather, the T lymphopoietic defect of NZB mice is due to an impaired ability of pluripotent hematopoietic stem cells (PHSCs) to generate more committed lymphoid progeny, which could include common lymphoid precursors and/or other T cell-committed progenitors. Although PHSCs from NZB mice were not as efficient at thymic repopulation as comparable numbers of PHSCs from control strains, the ability of common lymphoid precursors from NZB mice to repopulate the thymus was not defective. Similarly, more differentiated NZB T cell precursors included in the intrathymic pool of CD4(-)CD8(-) cells also exhibited normal T lymphopoietic potential. Taken together, the results identify an unappreciated defect in NZB mice and provide further evidence that generation of lymphoid progeny from the PHSCs is a regulated event.  相似文献   

3.
T lymphocytes of fetal origin found in maternal circulation after gestation have been reported as a possible cause for autoimmune diseases. During gestation, mothers acquire CD34+CD38+ cells of fetal origin that persist decades. In this study, we asked whether fetal T and B cells could develop from these progenitors in the maternal thymus and bone marrow during and after gestation. RAG-/--deficient female mice (Ly5.2) were mated to congenic wild-type Ly5.1 mice (RAG+/+). Fetal double-positive T cells (CD4+CD8+) with characteristic TCR and IL-7R expression patterns could be recovered in maternal thymus during the resulting pregnancies. We made similar observations in the thymus of immunocompetent mothers. Such phenomenon was observed overall in 12 of 68 tested mice compared with 0 of 51 controls (p=0.001). T cells could also be found in maternal spleen and produced IFN-gamma in the presence of an allogenic or an Ag-specific stimulus. Similarly, CD19+IgM+ fetal B cells as well as plasma Igs could be found in maternal RAG-/- bone marrow and spleen after similar matings. Our results suggest that during gestation mothers acquire fetal lymphoid progenitors that develop into functional T cells. This fetal cell microchimerism may have a direct impact on maternal health.  相似文献   

4.
NZB mice exhibit a primary T cell defect in fetal thymic organ culture   总被引:1,自引:0,他引:1  
Defects in T cell development have been suggested to be a factor in the development of systemic autoimmunity in NZB mice. However, the suggestion of a primary T cell defect has often been by extrapolation, and few direct observations of T cell precursors in NZB mice have been performed. Moreover, the capacity of NZB bone marrow T cell precursors to colonize the thymus and the ability of the NZB thymic microenvironment to support T lymphopoiesis have not been analyzed. To address this important issue, we employed the fetal thymic organ culture system to examine NZB T cell development. Our data demonstrated that NZB bone marrow cells were less efficient at colonizing fetal thymic lobes than those of control BALB/c or C57BL/6 mice. In addition, NZB bone marrow cells did not differentiate into mature T cells as efficiently as bone marrow cells from BALB/c or C57BL/6 mice. Further analysis revealed that this defect resulted from an intrinsic deficiency in the NZB Lin-Sca-1+c-kit+ bone marrow stem cell pool to differentiate into T cells in fetal thymic organ culture. Taken together, the data document heretofore unappreciated deficiencies in T cell development that may contribute to the development of the autoimmune phenotype in NZB mice.  相似文献   

5.
6.
We identified committed T cell progenitors (CTPs) in the mouse bone marrow that have not rearranged the TCRbeta gene; express a variety of genes associated with commitment to the T cell lineage, including GATA-3, T cell-specific factor-1, Cbeta, and Id2; and show a surface marker pattern (CD44+ CD25- CD24+ CD5-) that is similar to the earliest T cell progenitors in the thymus. More mature committed intermediate progenitors in the marrow have rearranged the TCR gene loci, express Valpha and Vbeta genes as well as CD3epsilon, but do not express surface TCR or CD3 receptors. CTPs, but not progenitors from the thymus, reconstituted the alphabeta T cells in the lymphoid tissues of athymic nu/nu mice. These reconstituted T cells vigorously secreted IFN-gamma after stimulation in vitro, and protected the mice against lethal infection with murine CMV. In conclusion, CTPs in wild-type bone marrow can generate functional T cells via an extrathymic pathway in athymic nu/nu mice.  相似文献   

7.
Cell surface antigens expressed by subsets of pre-B cells and B cells   总被引:9,自引:0,他引:9  
A large number of monoclonal antibodies, produced by immunizing rats with mouse pre-B cell lines, have been analyzed for their ability to define cell surface antigens expressed by B cells at early stages of differentiation. Whereas many antibodies recognized antigens on pre-B cell lines, only two clones detected cell surface antigens that were distinguished by their restricted distribution among a panel of continuous cell lines and cells from various tissues. Monoclonal antibody clone AA4.1 recognized a cell surface antigen found on all pre-B lymphomas and on one of three B lymphomas tested. This antigen was found on cells at highest frequency in the bone marrow. Adult spleen and fetal liver also have detectable numbers of AA4.1+ cells. Cells that did not express this antigen include plasmacytomas, two of three B lymphomas, T lymphomas, a stem cell line, adult liver, brain, thymus, and lymph node cells. Clone GF1.2 detected an antigen on some pre-B cell lines, one of three B lymphomas tested, and a small fraction of cells from adult bone marrow, spleen, lymph node, and fetal liver. Plasmacytomas, some pre-B lymphomas, two B lymphomas, T lymphomas, adult liver, brain, and thymus cells were negative. In adult bone marrow, AA4.1 bound to all cytoplasmic IgM+ pre-B cells, whereas GF1.2 detected one-half of these cells. Both antibodies recognized approximately 50% of surface IgM+ (sIgM+) bone marrow cells. A small population of bone marrow cells lacking any detectable Ig (surface or cytoplasmic) also reacted with these antibodies. Depletion of AA4.1 or GF1.2 antigen-bearing cells from bone marrow reduced the ability of bone marrow B cells to respond to LPS by 50 to 65%. Experiments with a cloned pre-B lymphoma demonstrate that AA4.1+ pre-B cells become sIgM+ GF1.2+ B cells after activation with LPS. These antibodies recognize cell surface determinants with restricted distribution among the B lymphocyte lineage because they detect antigens displayed by normal and transformed immature B lymphocytes.  相似文献   

8.
We recently described that T cell specification in mice deficient in the Hedgehog (Hh) receptor Patched (Ptch) is blocked at the level of the common lymphoid progenitor in the bone marrow (BM). Adoptive transfer of wild-type BM in Ptch-deficient mice provides evidence that T cell development strictly depends on Ptch expression in the nonhematopoietic compartment. Transplantation experiments using BM deficient in the glucocorticoid receptor exclude any involvement of the stress hormone corticosterone in our model. Using cell-type-specific knockout mice, we show that T cell development is independent of T cell-intrinsic Ptch expression. Furthermore, Ptch expression by the thymus stroma is dispensable, as revealed by fetal thymus organ culture and thymus transplantation. In contrast, analysis of the earliest thymic progenitors in Ptch-deficient mice indicated that Ptch is required for the development or supply of thymic homing progenitors that give rise to earliest thymic progenitors. Collectively, our findings identified Ptch as an exclusive T cell-extrinsic factor necessary for proper development of T cells at their prethymic stage. This observation may be important for current considerations using Hh inhibitors upstream of Ptch in diseases accompanied by aberrant Hh signaling.  相似文献   

9.
Induction of immunological tolerance is highly desirable for the treatment and prevention of autoimmunity, allergy, and organ transplant rejection. Adoptive transfer of MHC class I disparate mature T cells at the time of reconstitution of mice with syngeneic bone marrow resulted in specific tolerance to allogeneic skin grafts that were matched to the T cell donor strain. Mature allogeneic T cells survived long-term in reconstituted hosts and were able to re-enter the thymus. Analysis of T cell development using transgenic mice expressing an alloantigen-reactive TCR revealed that expression of allogeneic MHC class I on adoptively transferred mature T cells mediated negative selection of developing alloreactive T cells in the thymus. Thus, mature allogeneic T cells are able to mediate central deletion of alloreactive cells and induce transplantation tolerance without the requirement for any other alloantigen-expressing cell type.  相似文献   

10.
Foxn1Delta is a hypomorphic allele of the nude gene that causes arrested thymic epithelial cell differentiation and abnormal thymic architecture lacking cortical and medullary domains. T cells develop in the Foxn1Delta/Delta adult thymus to the double- and single-positive stages, but in the apparent absence of double-negative 3 (DN3) cells; however, DN3 cells are present in the fetal thymus. To investigate the origin of this seemingly contradictory phenotype, we performed an analysis of fetal and adult DN cells in these mutants. Neither adult bone marrow-derived cells nor fetal liver cells from wild-type or Rag1-/- mice were able to differentiate to the DN2 or DN3 stage in the Foxn1Delta/Delta thymus. Our data suggest that thymopoiesis in the Foxn1Delta/Delta adult thymus proceeds from CD117- atypical progenitors, while CD117+ DN1a cells are absent or blocked in their ability to differentiate to the T lineage. Wild-type cells generated by this pathway in the postnatal thymus were exported to the periphery, demonstrating that these atypical cells contributed to the peripheral T cell pool. The Foxn1Delta/Delta adult (but not fetal) thymus also preferentially supports B cell development, specifically of the B-1 type, and this phenotype correlated with reduced Notch ligand expression in the adult stroma.  相似文献   

11.
The ontogeny of hemopoietic cells which contain the enzyme terminal deoxynucleotidyl transferase (TdT) was studied in rats and mice. During fetal life, TdT-positive cells were first detected in the thymus, where they appeared on or about day 17 of gestation. TdT-positive cells were not found in fetal liver, spleen, or bone marrow, but appeared in bone marrow and spleen on the day after birth. In the rat, peak levels of TdT-positive cells were attained at 3 to 4 weeks of age in thymus, bone marrow, and spleen, accounting for 67, 3.9, and 2.3% of nucleated cells, respectively. The percentages of TdT-positive cells in thymus and bone marrow decreased gradually thereafter, whereas, TdT-positive cells in spleen were no longer detectable by 7 weeks of age. Normal percentages of TdT-positive cells were found in bone marrow and spleen from neonatally thymectomized rats and congenitally athymic (nu/nu) mice. Dexamethasone treatment resulted in a marked decrease in TdT-positive cells. The results are discussed with respect to the putative role of TdT-positive hemopoietic cells as thymocyte progenitors.  相似文献   

12.
Hematopoietic stem cells (HSCs) isolated from mouse fetal liver, like adult HSCs, are Thy-1lo Lin- Sca-1+. Donor-derived V gamma 3+ T cells were detected in fetal thymic lobes repopulated in vitro with fetal liver HSCs, but not in those with adult bone marrow HSCs. Single clonogenic fetal HSCs gave rise to thymic progeny that include V gamma 3+, other gamma delta+, and alpha beta+ T cells. No V gamma 3+ T cells were detected in adult thymus injected intrathymically with either fetal or adult HSCs. These results support the hypothesis that only fetal HSCs have the capacity to differentiate into V gamma 3+ T cells in the fetal thymic microenvironment and that the developmental potential of HSCs may change during ontogeny.  相似文献   

13.
Multilineage hemopoiesis induced by cloned stromal cells   总被引:1,自引:0,他引:1  
Long-term hemopoiesis in culture depends upon the presence of an adherent layer composed of a variety of stromal cells. A subtype of endothelial-adipocytes from the bone marrow stroma (clone 14F1.1) was previously shown to induce long-term myelopoiesis and renewal of pluripotent stem cells. One of a series of stromal cell lines and clones from mouse thymus stroma (STAC-1.2) has now been found to support long-term hemopoiesis. These marrow- and thymus-derived stromal cell clones also have lymphopoietic activities: precursor T cells, or pre-B cells accumulated in co-cultures of thymus cells and the stromal clones, as indicated by cell surface markers, T cell receptor and immunoglobulin gene rearrangements. The predominance of a cell type in these cultures depended upon the serum used to supplement the medium. Recombinant interleukin 2 (IL-2) and the 14F1.1 clone synergistically promoted the proliferation of thymocytes, while a thymus hormone, THF-gamma 2, shifted the population to a relatively mature phenotype. It is proposed that one major function of stromal cells, whether from the bone marrow or thymus, is to restrain the maturation flow and preferentially support the accumulation of cells at early differentiation stages.  相似文献   

14.
Limiting dilution analysis of the stem cells for T cell lineage   总被引:2,自引:0,他引:2  
Stem cell activities of bone marrow, spleen, thymus, and fetal liver cells for T cell lineage were studied comparatively by transferring the cells from these organs through i.v. or intrathymus (i.t.) route into right leg- and tail-shielded (L-T-shielded) and 900 R-irradiated recipient mice, which were able to survive without supplying hemopoietic stem cells. Cells from B10.Thy-1.1 (H-2b, Thy-1.1) mice were serially diluted and were transferred into L-T-shielded and irradiated C57BL/6 (H-2b, Thy-1.2) mice, and 21 days later the thymus cells of recipient mice were assayed for Thy-1.1+ cells by flow cytofluorometry. The percentage of recipient mice possessing donor-type T cells was plotted against the number of cells transferred, and the stem cell activity in each cell source was expressed as the 50% positive value, the number of donor cells required for generating donor-type T cells in the thymuses of 50% of recipient mice. In i.v. transfer experiments, the activity of bone marrow cells was similar to that of fetal liver cells, and about 100 times and nearly 1000 times higher than those of spleen cells and thymus cells, respectively. In i.t. transfer experiments, the number of cells required for generating donor-type T cells was much lower than that in i.v. transfer experiments, although the ratio in 50% positive values between i.v. and i.t. transfers differed among cell sources. In i.t. transfers, the 50% positive value of bone marrow cells was five times, 400 times, and 500 times higher than that of fetal liver cells, spleen cells, and thymus cells, respectively. Our previous finding that stem cells are enriched in the spleens of mice which were whole body-irradiated and marrow-reconstituted 7 days earlier was confirmed also by the present limiting dilution assay carried out in i.v. as well as i.t. transfers.  相似文献   

15.
16.
Dysfunction of irradiated thymus for the development of helper T cells   总被引:2,自引:0,他引:2  
The development of cytotoxic T cells and helper T cells in an intact or irradiated thymus was investigated. C57BL/6 (H-2b, Thy-1.2) mice were whole body-irradiated, or were irradiated with shielding over either the thymus or right leg and tail, and were transferred with 1.5 X 10(7) bone marrow cells from B10.Thy-1.1 mice (H-2b, Thy-1.1). At various days after reconstitution, thymus cells from the recipient mice were harvested and a peanut agglutinin low-binding population was isolated. This population was further treated with anti-Thy-1.2 plus complement to remove host-derived cells and was assayed for the frequency of cytotoxic T cell precursors (CTLp) and for the activity of helper T cells (Th). In the thymus of thymus-shielded and irradiated mice, Th activity reached normal control level by day 25, whereas CTLp frequency remained at a very low level during these days. In the thymus of whole body-irradiated mice, generation of CTLp was highly accelerated while that of Th was retarded, the period required for reconstitution being 25 days and more than 42 days for CTLp and Th, respectively. Preferential development of CTLp was also seen in right leg- and tail-shielded (L-T-shielded) and irradiated recipients. Histological observation indicated that Ia+ nonlymphoid cells were well preserved in the thymus of thymus-shielded and irradiated recipients, whereas in L-T-shielded and irradiated recipients, such cells in the medulla were markedly reduced in number. These results suggest strongly that the generation of Th but not CTLp is dependent on radiosensitive thymic component(s), and that such components may represent Ia+ cells themselves in the medulla or some microenvironment related to Ia+ cells.  相似文献   

17.
In embryonic mice pluripotential hemopoietic stem cells (PHSC) originate in the yolk sac and migrate to the fetal liver and from there to the bone marrow. Hemopoietic cells from yolk sac and fetal liver also migrate to the thymic primordium, and within the thymic environment these prothymocytes differentiate into mature T cells. We have recently demonstrated that macromolecular insoluble cold globulin (MICG), a T cell marker, is synthesized and inserted into the plasma membrane of embryonic prothymocytes as soon as these cells appear in the early thymus. In addition, we have shown that MICG+ cells are present within the fetal liver before the thymus has fully formed. In the present study we show that pluripotential hemopoietic stem cells in the fetal liver and bone marrow have MICG on their surface and represent a subpopulation of these MICG+ cells. The implications of these findings in relationship to stem cell differentiation and isolation are discussed.  相似文献   

18.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

19.
NK1.1+ T cells represent a specialized T cell subset specific for CD1d, a nonclassical MHC class I-restricting element. They are believed to function as regulatory T cells. NK1.1+ T cell development depends on interactions with CD1d molecules presented by hematopoietic cells rather than thymic epithelial cells. NK1.1+ T cells are found in the thymus as well as in peripheral organs such as the liver, spleen, and bone marrow. The site of development of peripheral NK1.1+ T cells is controversial, as is the nature of the CD1d-expressing cell that selects them. With the use of nude mice, thymectomized mice reconstituted with fetal liver cells, and thymus-grafted mice, we provide direct evidence that NK1.1+ T cells in the liver are thymus dependent and can arise in the thymus from fetal liver precursor cells. We show that the class I+ (CD1d+) cell type necessary to select NK1.1+ T cells can originate from TCRalpha-/- precursors but not from TCRbeta-/- precursors, indicating that the selecting cell is a CD4+CD8+ thymocyte. 5-Bromo-2'-deoxyuridine-labeling experiments suggest that the thymic NK1.1+ T cell population arises from proliferating precursor cells, but is a mostly sessile population that turns over very slowly. Since liver NK1.1+ T cells incorporate 5-bromo-2'-deoxyuridine more rapidly than thymic NK1.1+ T cells, it appears that liver NK1.1+ T cells either represent a subset of thymic NK1.1+ T cells or are induced to proliferate after having left the thymus. The results indicate that NK1.1+ T cells, like conventional T cells, arise in the thymus where they are selected by interactions with restricting molecules.  相似文献   

20.
Regulation of extrathymic T cell development and turnover by oncostatin M   总被引:3,自引:0,他引:3  
Chronic exposure to oncostatin M (OM) has been shown to stimulate extrathymic T cell development. The present work shows that in OM transgenic mice, 1) massive extrathymic T cell development takes place exclusively the lymph nodes (LNs) and not in the bone marrow, liver, intestines, or spleen; and 2) LNs are the sole site where the size of the mature CD4+ and CD8+ T cell pool is increased (6- to 7-fold). Moreover, when injected into OM transgenic mice, both transgenic and nontransgenic CD4+ and CD8+ T cells preferentially migrated to the LNs rather than the spleen. Studies of athymic recipients of fetal liver grafts showed that lymphopoietic pathway modulated by OM was truly thymus independent, and that nontransgenic progenitors could generate extrathymic CD4+CD8+ cells as well as mature T cells under the paracrine influence of OM. The progeny of the thymic-independent differentiation pathway regulated by OM was polyclonal in terms of Vbeta usage, exhibited a phenotype associated with previous TCR ligation, and displayed a rapid turnover rate (5-bromo-2'-deoxyuridine pulse-chase assays). This work suggests that chronic exposure to OM 1) discloses a unique ability of LNs to sustain extrathymic T cell development, and 2) increases the number and/or function of LN niches able to support seeding of recirculating mature T cells. Regulation of the lymphopoietic pathway discovered in OM transgenic mice could be of therapeutic interest for individuals with thymic hypoplasia or deficient peripheral T cell niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号