首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

2.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

3.
心外膜应用腺苷时c—fos在脊髓延髓和丘脑中的表达   总被引:2,自引:0,他引:2  
马秀英  张连珊 《生理学报》1997,49(4):395-399
在12只切断两侧缓冲神经和迷走神经的麻醉大鼠,观察了心外膜应用腺苷对脊髓,延髓和丘脑c-fos原部基因表达的影响。结果显示:心外膜应用腺苷组大鼠,动脉血压和心率无明显变化;脊髓T3节段背角,延髓巨细胞旁外侧核以及丘脑的腹后外侧核,后核,中央外侧核和束旁核等部位Fos蛋白样免疫阳性反应神经元显著增加;而在溶剂对照组大鼠,仅见少数FLI细胞。  相似文献   

4.
The concentration of peptide YY (PYY)-like immunoreactivity in rat brain and spinal cord was determined by radioimmunoassay. The highest concentrations were found in the cervical spinal cord (18.1 +/- 1.3 ng/g, mean +/- S.E.M.) and in the medulla oblongata (16.3 +/- 1.5 ng/g). Lower amounts were found in the pons and in the hypothalamus. Chromatographic analysis of the PYY-like immunoreactivity from various regions of the brain revealed 95% of the immunoreactive material to be indistinguishable from synthetic porcine PYY. PYY-immunoreactive nerve cell bodies could be demonstrated by immunocytochemistry in the medulla oblongata of colchicine-treated rats, the largest group of cells being found in the midline area between and partly in the raphe pontis and obscurus nuclei. Another large group of immunoreactive cells was detected more laterally in the medial parts of the gigantocellular reticular nucleus. A few cells, finally, were seen in the dorsal parts of the medulla, including the nucleus of the solitary tract. Varicose nerve fibers displaying PYY immunoreactivity were observed in many parts of the hypothalamus, pons, medulla and spinal cord.  相似文献   

5.
ABSTRACT The spinal cords of vertebrates are generally divided into the cord proper and the minute filum terminale. While the spinal cord extends the entire length of the vertebral canal in the adult tiger puffer, Takifugu rubripes, the cord proper is greatly reduced in length and almost all of the canal is occupied by the filum terminale, which is tape-like rather than thread-like. The dorsal and ventral roots of the spinal nerves extend, respectively, above and below the filum terminale; as a whole, these form a massive cauda equina. Supramedullary cells are found in the rostral half of the medulla oblongata caudal to the cerebellum. In 4-mm long tiger puffers, the spinal cord is cylindrical and supramedullary cells are found in the rostral half of the cord. In 7-mm puffers, the longitudinally arranged ventral roots appear ventrally in the middle portion of the spinal cord. In 15-mm puffers, the dorsal and ventral roots run longitudinally along the spinal cord and have noticeably increased in number. Supramedullary cells are located in the rostral 15% of the cord. In 21-mm puffers, the spinal cord in large part becomes dorsoventrally flattened. In 30-mm puffers, the spinal cord becomes much flatter, and supramedullary cells now are located mainly in the medulla oblongata. These observations indicate that formation of the shortened spinal cord proper is due to at least two developmental processes. First, the elongation of the spinal cord proper is remarkably less than that of the vertebral canal. Second, the bulk of the spinal cord proper is translocated to the cranial cavity, where it is transformed into part of the medulla oblongata.  相似文献   

6.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity measured in the ventral and dorsal part of the dog spinal cord (L6-S2) and in the stumps of the sciatic nerve 5, 10, 15 and 21 days after its transection were compared with the corresponding activities in the intact contralateral nerve and in sham-operated animals. AChE was also examined histochemically. Changes in the enzyme activities in the central nerve stump were correlated with activity changes in the spinal cord. In the central nerve stump, a marked (25%) increase in AChE activity was found on the fifth day after transection, but by the 21st day it fell below control value levels; up to the 15th day it showed good correlation with AChE activity in the ventral spinal cord. Histochemically, pronounced reduction of enzymatic activity was found in the ipsilateral part of the spinal cord. On the 15th day, ChAT activity in the ventral spinal cord was also significantly decreased and the accumulation of the enzyme in the central nerve stump was negligible. On the contrary, at the last 21-day interval examined, a significant increase in ChAT activity and a nonsignificant increase in AChE activity was found in the spinal cord, but their activities in the central nerve stump were decreased. In the degenerated peripheral nerve stump ChAT activity dropped by an average of 99% and AChE activity by 48% during the first 15 days after transection but, on the 21st day, AChE activity was 22% higher than at the preceding interval.  相似文献   

7.
Distribution of Branch Point Prenyltransferases in Regions of Bovine Brain   总被引:1,自引:0,他引:1  
Abstract: Bovine brains contain large amounts of isoprenoid compounds and the enzymes involved in their biosynthesis were investigated. Ten different regions were dissected from fresh bovine brains and, in addition, fractions from cerebellum, spinal cord, and hypophysis were obtained. The cholesterol concentration was found to be ∼8 mg/g in the cortex regions and three times higher in the pons, medulla oblongata, and white matter. Dolichol concentration varied between 8 and 40 µg/g in the different tissues, and ubiquinone was found at a lower level, which varied between 3 and 25 µg/g. Farnesyl-pyrophosphate synthase activity in cytosolic fractions from various regions exhibited only a twofold variation, whereas geranylgeranyl pyrophosphate synthase displayed larger differences, being particularly rich in the pons, medulla oblongata, white matter, and spinal cord. Squalene synthase activity was lowest in the thalamus and threefold higher in the pons. Determination of specific activity based on cholesterol content revealed that enzyme activities in various regions are not related to the actual lipid amount present. Both cis - and trans -prenyltransferases exhibited similarities in their regional distribution showing up to 20-fold differences in activity. Thus, it appears that the mevalonate pathway lipids and the various branch point enzymes involved in their syntheses vary greatly in different brain regions and are subjected to separate regulation.  相似文献   

8.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the ventral spinal cord, ventral spinal roots and in the central and peripheral stumps of the sciatic nerve transected under conditions of partial ischemia (produced by aortic ligation just below the renal arteries) were compared to those obtained under intact blood supply in time intervals 5, 10, or 15 days after surgery. The significant increase of ChAT activity in the central part of the sciatic nerve following 15 days of partial ischemia correlated with less significant elevation of ChAT in the ventral spinal cord. The changes of AChE activity were not significant during partial ischemia. ChAT in the peripheral stump of the sciatic nerve following 5 days of partial ischemia was preserved by 40% and AChE by 20% more than under normal blood supply. On the contrary, in the next 5 days interval losses of enzymes activity in the degenerating nerve were greater. ChAT was almost totally inactivated whereas 50% of AChE activity was preserved until the end of period examined.  相似文献   

9.
By means of the anterograde axoplasmic transport technique for a mixture of labelled aminoacids (3H-leucine and 3H-proline), ascending and descending systems of the reticular formation fibers in the cat mesencephalon have been studied. Projections from the mesencephalon reticular formation (MRF) ascend to the subthalamus, lateral, dorsal and periventricular hypothalamus, to the periventricular nuclei of the midline and to the intralaminar nuclei of the thalamus. The descending pathways project to the grey substance surrounding the aqueduct of cerebrum, locus coeruleus, parabrachial region and reticular formation of the pons and medulla oblongata. The projections to the reticular nucleus of the thalamus, ventral nucleus of the external geniculate body and superior colliculi arise from the dorsal half of the MRF, and projections to the striatum, lateral reticular nucleus of the medulla oblongata--from its ventral half. Most of the structures are reciprocally connected with the MRF.  相似文献   

10.
Distribution of gastrin and CCK-like peptides in rat brain   总被引:2,自引:0,他引:2  
Summary The distribution of gastrin and CCK-like peptides in the rat brain was studied by immunocytochemistry using an antiserum reacting equally well with both groups of peptides. Immunoreactive nerve cell bodies were detected in all cortical areas, in the hippocampus where they were particularly numerous, in the mesencephalic central gray and in the medulla oblongata. After colchicine treatment immunoreactive material appeared also in cell bodies of the magnocellular hypothalamic system. Immunoreactive nerve fibers were widely distributed in the brain. Particularly dense accumulations were seen in the hippocampus near the ventral surface of the brain, in the caudate nucleus, in the interpeduncular nucleus, the parabrachial nucleus, the dorsal part of the medulla oblongata and in the dorsal horn of the spinal cord. In the hypothalamus immunoreactive nerve fibers were observed in all nuclei, being most frequent in the ventromedial, dorsal and lateral hypothalamic nuclei. A rich supply of nerve fibers was seen in the outer zone of the median eminence and in the neurohypophysis. From previous immunochemical analysis it appears that the peptide demonstrated in most parts of the brain is identical with CCK-8. In the neurosecretory cell bodies of the hypothalamus, the median eminence and the neurohypophysis, however, the immunoreactive material is probably identical with gastrin.  相似文献   

11.
L-[3H]Glutamate exhibited specific binding to fresh membranes of cat CNS under physiological conditions of pH and temperature. This binding occurred in the absence of sodium ions. Kinetic analysis of the data for cerebellum suggested the presence of two distinct binding sites: a high-affinity process (Kd = 0.33 microM) with a capacity of 15 pmol/mg protein and a low-affinity process (Kd = 1.8 microM) which had a capacity of 65 pmol/mg protein. Several structural analogues of glutamic acid were able to appreciably inhibit the binding of [3H]glutamate. The distribution of glutamate binding between 12 regions of the CNS was measured. The amygdaloid complex exhibited the highest binding followed by hippocampus > hypothalamus identical to visual cortex identical to thalamus identical to caudate nucleus > olfactory bulb identical to tectum identical to cerebellum > dorsal pons identical to medulla > cervical spinal cord. These findings are consistent with the binding of [3H]glutamate being to its receptor.  相似文献   

12.
In order to obtain further evidence of putative neurotransmitters in primary sensory neurons and interneurons in the dorsal spinal cord, we have studied the effects of unilateral section of dorsal roots and unilateral occlusion of the dorsal spinal artery on cholinergic enzyme activity and on selected amino acid levels in the spinal cord. One week after sectioning dorsal roots from caudal cervical (C7) to cranial thoracic (T2) levels, the specific activity of choline acetyltransferase (ChAT) was significantly decreased and acetylcholinesterase (AChE) showed a tendency to decrease in the dorsal quadrant on the operated side of the spinal cord. Dorsal root sectioning had little effect on the levels of free glutamic acid or other amino acids in the dorsal spinal cord. These results suggest that primary sensory neurons may include some cholinergic axons, and that levels of putative amino acid transmitters are not regulated by materials supplied by axonal transport from the dorsal root ganglia. By contrast, one week following unilateral occlusion of the dorsal spinal artery, the activities of ChAT and AChE were unchanged in the operated quadrant of the spinal cord, while decreases of Asp, Glu, and GABA, and an increase in Tau were detected. These findings are consistent with the proposals that such amino acids, but not ACh, may function as neurotransmitter candidates in interneurons of the dorsal spinal cord.Abbreviation used ACh acetylcholine - AChE acetylcholinesterase - Asp aspartic acid - ChAT choline acetyltransferase - GABA -aminobutyric acid - Glu glutamic acid - Gly glycine - SP substance P - Tau taurine  相似文献   

13.
Abstract— Distribution profiles of taurine and activity of cysteine sulphinate decarboxylase (CSD), the enzyme catalysing the formations of hypotaurine from cysteine sulphinate and of taurine from cysteate respectively, in the rat spinal cord and thalamus were studied in comparison with those of GABA and activity of l -glutamate decarboxylase (GAD), the rate limiting enzyme for GABA formation. In the spinal cord (L2-L3), it was found that taurine is fairly evenly distributed, whereas the activity of CSD is higher in the dorsal half of the spinal cord than in the ventral half. The highest CSD activity was found in the dorsal part of the dorsal horn. In the anterior part (A 5.4) of the thalamus, taurine and CSD activity were also distributed evenly and no areas having high taurine content and CSD activity were detected. In contrast with the even distributions of taurine and CSD activity, both GABA and GAD activity were distributed unevenly in the same CNS areas examined: The areas having high GABA content and GAD activity in the thalamus (A 5.4) coincided with the ventrolateral part of the ventral nucleus of thalamus (VM), entopeduncular nucleus (EP) and nucleus reuniens thalami (RE), whereas those in the spinal cord were found to be in the dorsal part of the dorsal horn and surrounding parts of the central canal, respectively. Considering a probable role of GABA in mammalian central nervous system (CNS) as an inhibitory neurotransmitter, it seems unlikely that taurine acts as an inhibitory neurotransmitter at least in the rat spinal cord and thalamus.  相似文献   

14.
Quantitative measurements were made of choline acetyltransferase (CAT) activity, acetylcholinesterase (AChE) acitivity and cholinergic muscarinic receptor binding ([3H]QNB) in eight areas of a cross-section of the rat medulla oblongata. A fourth cholinergic parameter, high-affinity choline uptake, was measured in three groups of these areas. CAT, AChE and [3H]QNB binding were found to be highest in the hypoglossal nucleus and the dorsal motor nucleus of the vagus; the lowest value was in the area which contains the inferior olive and the corticospinal tract. The distribution of AChE and CAT acitivities varied approximately 7- to 10-fold among the eight regions examined, whereas that of the muscarinic receptor varied only about 4-fold. The Na+-dependent high-affinity choline uptake varied approximately 20-fold from the region with the lowest activity (inferior olivary nucleus and corticospinal tract) to that with the highest activity (tissue areas containing the dorsal motor nucleus, hypoglossal nucleus, nucleus of the solitary tract and nucleus cuneatus). The four cholinergic parameters are statistically correlated throughout all the areas of the medulla which were studied.  相似文献   

15.
Endogenous noradrenaline levels are elevated in medulla oblongata, mesencephalon, pons and thalamus of adult rats which had been treated with 6-hydroxydopamine on days 1, 2, 8 and 15 after birth. Levels in spinal cord, cerebellum, hippocampus/amygdala and cortex are depressed, whereas no significant changes are observed in striatum, hypothalamus and medulla spinalis. The rate at which medulla oblongata synthesizes tritiated noradrenaline and dopamine from tritiated tyrosine invitro is markedly enhanced. No effect was apparent on catecholamine synthesis in hypothalamus. Tritiated noradrenaline synthesis, but not tritiated dopamine synthesis, in the cortex is depressed. These results support the view that neonatal 6-hydroxydopamine treatment causes a degeneration of noradrenaline nerve terminals in the cortex and induces an increase in noradrenaline terminals in the medulla oblongata.  相似文献   

16.
The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly (P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.  相似文献   

17.
Using autoradiographic method and 125I-Tyro rat CGRP as a ligand, receptor binding sites were demonstrated in the rat central nervous system. Saturation studies and Scatchard analysis of CGRP-binding to slide mounted tissue sections containing primarily cerebellum showed a single class of receptors with a dissociation constant of 0.96 nM and a Bmax of 76.4 fmol/mg protein. 125I-Tyro rat CGRP binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the telencephalon (medial prefrontal, insular and outer layers of the temporal cortex, nucleus accumbens, fundus striatum, central and inferior lateral amygdaloid nuclei, most caudal caudate putamen, organum vasculosum laminae terminalis, subfornical organ), the diencephalon (anterior hypothalamic, suprachiasmatic, arcuate, paraventricular, dorsomedial, periventricular, reuniens, rhomboid, lateral thalamic pretectalis and habenula nuclei, zona incerta), in the mesencephalon (superficial layers of the superior colliculus, central nucleus of the geniculate body, inferior colliculus, nucleus of the fifth nerve, locus coeruleus, nucleus of the mesencephalic tract, the dorsal tegmental nucleus, superior olive), in the molecular layer of the cerebellum, in the medulla oblongata (inferior olive, nucleus tractus solitarii, nucleus commissuralis, nuclei of the tenth and twelfth nerves, the prepositus hypoglossal and the gracilis nuclei, dorsomedial part of the spinal trigeminal tract), in the dorsal gray matter of the spinal cord (laminae I-VI) and the confines of the central canal. Moderate receptor densities were found in the septal area, the "head" of the anterior caudate nucleus, medial amygdaloid and bed nucleus of the stria terminalis, the pyramidal layers of the hippocampus and dentate gyri, medial preoptic area, ventromedial nucleus, lateral hypothalamic and ventrolateral thalamic area, central gray, reticular part of the substantia nigra, parvocellular reticular nucleus. Purkinje cell layer of the cerebellum, nucleus of the spinal trigeminal tract and gracile fasciculus of the spinal cord. The discrete distribution of CGRP-like binding sites in a variety of sensory systems of the brain and spinal cord as well as in thalamic and hypothalamic areas suggests a widespread involvement of CGRP in a variety of brain functions.  相似文献   

18.
In three species of plethodontid salamanders (Plethodon jordani, Hydromantes italicus, and Bolitoglossa subpalmata), primary and secondary somatosensory pathways were investigated by means of tract-tracing in vivo and in vitro using biocytin, horseradish peroxidase, and neurobiotin. Afferent sensory fibers of cranial nerves V, VII, and X and the brachial nerve run in the dorsal funiculus of the medulla oblongata and spinal cord. Fibers ascend to the level of, but do not enter, the cerebellum. In the caudal medulla oblongata, sensory tracts of the cranial nerves descend in a dorsal and a dorsolateral bundle and reach the level of the fourth spinal nerve. Two bundles are likewise formed by spinal afferent fibers, which descend to the level of the seventh spinal nerve. Secondary somatosensory projections ascend in contralateral ventral, contralateral lateral, and ipsilateral lateral tracts, the latter two corresponding to the spinal lemniscal tracts of Herrick. These tracts reach the cerebellum, mesencephalic, and diencephalic targets (tegmentum, torus, tectum, tuberculum posterius, pretectum, and ventral thalamus) ipsi- and contra-laterally. The projection to the tectum is confined to fiber layer 4. Fibers of the ascending tracts cross in the cerebellar and tectal commissure. Our study demonstrates that the ascending secondary somatosensory pathways of plethodontid salamanders differ remarkably from those of other amphibians. J. Morphol. 238:307–326, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Regeneration of ventral root axons of the lumbar seventh (L7) segment into the dorsal L7 roots on the opposite side of cat spinal cord was shown by changes in the levels of acetylcholinesterase (AChE) and pseudocholinesterase (PsChE). Low levels of AChE and PsChE were found in control dorsal roots, but when regenerating ventral root fibers entered the dorsal roots, there was a doubling of AChE activity within 2 weeks. Growth appears to start some time after the first week; this is in accord with earlier evidence based on axoplasmic flow of isotope labeled protein in this experimental preparation. The level of AChE activity in the reinnervated dorsal roots increased continually for about 100 days before reaching a plateau at approximately 20 × control levels. The gradual increase and the plateau of AChE activity is in accord with a maturation of the ventral root fibers which had regenerated into the dorsal roots. PsChE in the dorsal roots changes in parallel with AChE in a ratio of 1:10, suggesting that PsChE may in part be localized in the regenerating axons.  相似文献   

20.
The intraventricular and intravenous administration of naloxone was studied for its effect on the homocarnosine amount in cerebral hemispheres, striatum, hippocamp, hypothalamus, thalamus, cerebellum, medulla oblongata as well as in the spinal cord of rabbits. The intracysternal administration of naloxone decreases the homocarnosine amount in the striatum, hypothalamus, cerebellum and medulla oblongata. The intravenous administration of peptide exerts no statistically reliable effect on the homocarnosine content in the rabbit brain. The intraperitoneal administration of delta-sleep-inducing peptide increases sharply the homocarnosine content in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号