首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

2.
Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial purification by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a significant improvement in the thermal stability of the biocatalyst after immobilization. Apparent K m values for inulin, raffinose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (E a) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was effectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.  相似文献   

3.
Xylanase from Aspergillus tamarii was covalently immobilized on Duolite A147 pretreated with the bifunctional agent glutaraldehyde. The bound enzyme retained 54.2% of the original specific activity exhibited by the free enzyme (120 U/mg protein). Compared to the free enzyme, the immobilized enzyme exhibited lower optimum pH, higher optimum reaction temperature, lower energy of activation, higher Km (Michaelis constant), lower Vmax (maximal reaction rate). The half-life for the free enzyme was 186.0, 93.0, and 50.0 min for 40, 50, and 60°C, respectively, whereas the immobilized form at the same temperatures had half-life of 320, 136, and 65 min. The deactivation rate constant at 60°C for the immobilized enzyme is about 6.0 × 10−3, which is lower than that of the free enzyme (7.77 × 10−3 min). The energy of thermal deactivation was 15.22 and 20.72 kcal/mol, respectively for the free and immobilized enzyme, confirming stabilization by immobilization. An external mass transfer resistance was identified with the immobilization carrier (Duolite A147). The effect of some metal ions on the activity of the free and immobilized xylanase has been investigated. The immobilized enzyme retained about 73.0% of the initial catalytic activity even after being used 8 cycles.  相似文献   

4.
Microbial milk-clotting enzymes are valued as calf rennet substitutes in the cheese industry. Aspergillus oryzae MTCC 5341 was identified to produce the highest milk-clotting activity during screening of 16 fungal strains. Solid state fermentation using wheat bran along with 4% defatted soy flour and 2% skim milk powder as substrate was optimal for growth of A. oryzae and production of the enzyme. Nearly 40,000 U/g bran of milk-clotting activity was present at the end of 120 h. The enzyme could be recovered by percolating the bran with 0.1 M sodium chloride for 60 min at 4°C. The decolorized enzyme preparation had high ratio of milk clotting to proteolytic activity. Affinity precipitation with alginate and subsequent elution with 0.5 M sodium chloride containing 0.2 M CaCl2 resulted in an enzyme preparation with specific activity of 3,500 U/mg and 72% yield. Optimum pH and temperature for activity of the enzyme were characterized as 6.3 and 55°C, respectively. Milk-clotting enzyme showed differential degree of hydrolysis on casein components. High ratio of milk clotting to proteolytic activity coupled with low thermal stability strengthens the potential usefulness of milk-clotting enzyme of A. oryzae MTCC 5341 as a substitute for calf rennet in cheese manufacturing.  相似文献   

5.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

6.
The cheese industry is seeking novel sources of enzymes for cheese production. Microbial rennets have several advantages over animal rennets. (1) They are easy to generate and purify and do not rely on the availability of animal material. (2) The production of microbial clotting enzymes may be improved by biotechnological techniques. In this work, the biochemical characterization of a novel milk-clotting extracellular enzyme from Myxococcus xanthus strain 422 and a preliminary evaluation of its cheese-producing ability are reported. Strain 422 was selected from four M. xanthus strains as the best producer of extracellular milk-clotting activity, based on both its enzyme yield and specific milk-clotting activity, which also afforded lower titration values than enzymes from the three other M. xanthus strains. The active milk-clotting enzyme from M. xanthus strain 422 is a true milk-clotting enzyme with a molecular mass of 40 kDa and a pI of 5.0. Highest milk-clotting activity was at pH 6 and 37 °C. The enzyme was completely inactivated by heating for 12 min at 65 °C. The crude enzyme preparation was resolved by anion-exchange chromatography into two active fractions that were tested in cheese production assays of compositional (dry matter, fat content, fat content/dry-matter ratio, and moisture-non-fat content) and physicochemical properties (firmness, tensile strength, pH and Aw) of the milk curds obtained. Purified protein fraction II exhibited a significantly higher milk-clotting ability than either protein fraction I or a total protein extract, underlining the potential usefulness of M. xanthus strain 422 as a source of rennet for cheese production.  相似文献   

7.
The cellsof Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature for the activity of nitrile hydratase in both the free and immobilized cells were 7.4 and 45°C, respectively, yet the optinum temperature for acrylamide production by the immobilized cells was 20°C. The nitrile hydratase of the immobilized cells was more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly decreased with repeated use. However, the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to be of commercial use without further purification.  相似文献   

8.
A milk-clotting enzyme from Bacillus subtilis K-26 was purified by gel filtration and ion-exchange chromatography resulting in a 24-fold increase in specific activity with an 80% yield. Polyacrylamide gel electrophoresis and ultracentrifugel analysis revealed that the purified enzyme was homogeneous and had a molecular weight of 27,000 and a Km of 2.77mg/ml for κ-casein. The enzyme was most stable at pH 7.5 and showed increasing clotting activity with decrease in milk pH up to 5.0. The maximum milk-clotting activity was obtained at 60°C, but the enzyme was inactivated by heating for 30 min at 60°C. The enzyme was irreversibly inhibited by EDTA and unaffected by DFP. Heavy-metal ions (Hg2+, Pb2+) inactivated the enzyme.  相似文献   

9.
The dynamics of β-xylosidase biosynthesis from Aspergillus niger B 03 was investigated in laboratory bioreactor. Maximum xylosidase activity 5.5 U/ml was achieved after 80 h fermentation at medium pH 4.0. The isolated β-xylosidase was immobilized on polyamide membrane support and the basic characteristics of the immobilized enzyme were determined. Maximum immobilization and activity yield obtained was 30.0 and 6.8%, respectively. A shift in temperature optimum and pH optimum was observed for immobilized β-xylosidase compared to the free enzyme. Immobilized enzyme exhibited maximum activity at 45 °C and pH 4.5 while its free counterpart at 70 °C and pH 3.5, respectively. Thermal stability at 40 and 50 °C and storage stability of immobilized β-xylosidase were investigated at pH 5.0. Kinetic parameters Km, Vmax and Ki were determined for both enzyme forms. Free and immobilized β-xylosidase were tested for xylose production from birchwood xylan. The substrate was preliminarily depolymerized with xylanase to xylooligosaccharides and the amount of xylose obtained after their hydrolysis with free and immobilized β-xylosidase was determined by HPLC analysis. Continuous enzyme hydrolysis of birchwood xylan was performed with xylanase and free or immobilized β-xylosidase. The maximum extent of hydrolysis was 25 and 30% with free and immobilized enzyme, respectively. Immobilized preparation was also examined for reusability in 20 consecutive cycles at 40 °C.  相似文献   

10.
Immobilization of biologically important molecules on a myriad of nanosized materials has attracted great attention due to their small size, biocompatibility, higher surface-to-volume ratio, and lower toxicity. These properties make nanoparticles (NPs) a superior matrix over bulk material for the immobilization of enzymes and proteins. In the present study, Bacillus amyloliquefaciens α-amylase was immobilized on SnO2 nanoparticles by a simple adsorption mechanism. Nanoparticle-adsorbed enzyme retained 90% of the original enzyme activity. Thermal stability of nanosupport was investigated by thermogravimetric and differential thermal analysis. Scanning electron microscopic studies showed that NPs have porous structure for the high-yield immobilization of α-amylase. The genotoxicity of SnO2-NPs was analyzed by pUC19 plasmid nicking and comet assay and revealed that no remarkable DNA damage occurred in lymphocytes. The pH-optima was found to be the same for both free and SnO2-NPs bound enzyme, while the temperature-optimum for NPs-adsorbed α-amylase was 5°C higher than its free counterpart. Immobilized enzyme retained more than 70% enzyme activity even after its eight repeated uses.  相似文献   

11.
Urease from dehusked seeds of watermelon was immobilized in 1.5% agarose gel with 53.9% entrapment. There was negligible leaching (<10% at 4°C) and the same gel membrane could repeatedly be used for seven days. The immobilization exhibited no apparent change in the optimum pH but there was a significant decrease in the optimum temperature (50°C as compared to 65°C for soluble urease). The immobilized urease revealed an apparentK m of 9.3±0.3 mM; 1.2 times lower than the soluble enzyme (11.4±0.2 mM). Unlike soluble enzyme which was inhibited at 200 mM urea, the immobilized urease was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2 M urea. The time-dependent thermal inactivation kinetics at 48 and 52°C was found to be biphasic, in which half of the initial activity was destroyed more rapidly than the remaining half. These gel membranes were also used for estimating the urea content of the blood samples from the University hospital. The results obtained matched well with those obtained by the usual method employed in the clinical pathology laboratory. The significance of these observations is discussed.  相似文献   

12.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   

13.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan–alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co2+, Cu2+, and Fe3+, increased the enzyme activity, whereas CA activity was inhibited by Pb2+, Hg2+, ethylenediamine tetraacetic acid (EDTA), 5,5′-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO2 to CaCO3. The maximum CO2 sequestration potential was achieved with immobilized CA (480 mg CaCO3/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO2 sequestration.  相似文献   

14.
The ratio of milk-clotting activity to proteolytic activity (MC/PA) was used as an index to determine the quality of milk-clotting enzyme. Solid-state fermentation on wheat bran for 5 days at room temperature gave optimal production for enzyme by Rhizomucor miehei and R. pusillus. A ratio of wheat bran to moisture of 1:0.6 (w/v) gave best results. Adding skim milk powder to the media of R. miehei did not improve the MC/PA ratio but 4% (w/w) of the powder did improve the ratio with R. pusillus. Co-cultivation of R. miehei with R. pusillus did not change the MC/PA ratio.The authors are with the Department of Biotechnogy, Bharathiar University. Coimbatore-641 046 India  相似文献   

15.
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG (activation free energy) and ΔGE‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔGES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS value implied that the immobilized form of the enzyme was more ordered than its free form.  相似文献   

16.
Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO4.7H2O, 0.05% KCl, 0.2% K2HPO4 and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50–60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg2+ and K+, whereas Ca2+ and Mn2+ greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.  相似文献   

17.
Arthrobacter sp. lipase (ABL, MTCC no. 5125) is being recognized as an efficient enzyme for the resolution of drugs and their intermediates. The immobilization of ABL on various matrices for its enantioselectivity, stability, and reusability has been studied. Immobilization by covalent bonding on sepharose and silica afforded a maximum of 380 and 40 IU/g activity, respectively, whereas sol–gel entrapment provided a maximum of 150 IU/g activity in dry powder. The immobilized enzyme displayed excellent stability in the pH range of 4–10 and even at higher temperature, i.e., 50–60°C, compared to free enzyme, which is unstable under extreme conditions. The resolution of racemic auxiliaries like 1-phenyl ethanol and an intermediate of antidepressant drug fluoxetine, i.e., ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates, provided exclusively R-(+) products (∼99% ee, E=646 and 473), compared to cell free extract/whole cells which gave a product with ∼96% ee (E=106 and 150). The repeated use (ten times) of covalently immobilized and entrapped ABL resulted in no loss in activity, thus demonstrating its prospects for commercial applications.  相似文献   

18.
d-Amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T m was increased from 45°C of the free form to 55°C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h.  相似文献   

19.
The direct immobilization of soluble peroxidase isolated and partially purified from shoots of rice seedlings in calcium alginate beads and in calcium agarose gel was carried out. Peroxidase was assayed for guaiacol oxidation products in presence of hydrogen peroxide. The maximum specific activity and immobilization yield of the calcium agarose immobilized peroxidase reached 2,200 U mg−1 protein (540 mU cm−3 gel) and 82%, respectively. In calcium alginate the maximum activity of peroxidase upon immobilization was 210 mU g−1 bead with 46% yield. The optimal pH for agarose immobilized peroxidase was 7.0 which differed from the pH 6.0 for soluble peroxidase. The optimum temperature for the agarose immobilized peroxidase however was 30°C, which was similar to that of soluble peroxidase. The thermal stability of calcium agarose immobilized peroxidase significantly enhanced over a temperature range of 30∼60°C upon immobilization. The operational stability of peroxidase was examined with repeated hydrogen peroxide oxidation at varying time intervals. Based on 50% conversion of hydrogen peroxide and four times reuse of immobilized gel, the specific degradation of guaiacol for the agarose immobilized peroxidase increased three folds compared to that of soluble peroxidase. Nearly 165% increase in the enzyme protein binding to agarose in presence of calcium was noted. The results suggest that the presence of calcium, ions help in the immobilization process of peroxidase from rice shoots and mediates the direct binding of the enzyme to the agarose gel and that agarose seems to be a better immobilization matrix for peroxidase compared to sodium alginate.  相似文献   

20.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号