首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNATyr anticodon arms containing the natural base modifications N6-dimethylallyl adenine (i6A37) and pseudouridine (ψ39). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i6A37 modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C32-A38+ base pair and an A37-U33 base-base interaction. Although the i6A37 modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i6A37 modification and Mg2+ are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNAPhe, but these elements do not result in this signature feature of the anticodon loop in tRNATyr.  相似文献   

2.
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes. Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37th position and it is next to the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m1G37) methyltransferase (TrmD). It is deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37th and 38th position except three tRNA subsets having G residues at 36th and 39th positions. Therefore we propose that m1G37 modification may be feasible at 36th, 37th, 38th, 39th and 40th positions next to the anticodon of tRNAs. Collectively, methylation at G residues close to the anticodon may be possible at different positions and without restriction of anticodon 3rd base A, C, U or G.  相似文献   

3.
4.
5.
6.
7.
The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.  相似文献   

8.
Nucleoside base modifications can alter the structures and dynamics of RNA molecules and are important in tRNAs for maintaining translational fidelity and efficiency. The unmodified anticodon stem–loop from Escherichia coli tRNAPhe forms a trinucleotide loop in solution, but Mg2+ and dimethylallyl modification of A37 N6 destabilize the loop-proximal base pairs and increase the mobility of the loop nucleotides. The anticodon arm has three additional modifications, ψ32, ψ39, and A37 C2-thiomethyl. We have used NMR spectroscopy to investigate the structural and dynamical effects of ψ32 on the anticodon stem-loop from E.coli tRNAPhe. The ψ32 modification does not significantly alter the structure of the anticodon stem–loop relative to the unmodified parent molecule. The stem of the RNA molecule includes base pairs ψ32-A38 and U33–A37 and the base of ψ32 stacks between U33 and A31. The glycosidic bond of ψ32 is in the anti configuration and is paired with A38 in a Watson–Crick geometry, unlike residue 32 in most crystal structures of tRNA. The ψ32 modification increases the melting temperature of the stem by ~3.5°C, although the ψ32 and U33 imino resonances are exchange broadened. The results suggest that ψ32 functions to preserve the stem integrity in the presence of additional loop modifications or after reorganization of the loop into a translationally functional conformation.  相似文献   

9.
Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.  相似文献   

10.
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm5) or 5-methoxycarbonylmethyl (mcm5) side-chain and sometimes also a 2-thio or 2′-O-methyl group. The first step in the formation of the ncm5 and mcm5 side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.  相似文献   

11.
tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.  相似文献   

12.
13.
The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present in position 37 (adjacent to and 3′ of the anticodon) of tRNAs that read codons beginning with U except tRNA I,VSer in Escherichia coli. In Salmonella typhimurium, 2-methylthio-N-6-(cis-hydroxy)isopentenyl adenosine (ms2io6A; also referred to as 2-methylthio cis-ribozeatin) is found in tRNA, most likely in the species that have ms2i6A in E. coli. Mutants (miaE) of S. typhimurium in which ms2i6A hydroxylation is blocked are unable to grow aerobically on the dicarboxylic acids of the citric acid cycle. Such mutants have normal uptake of dicarboxylic acids and functional enzymes of the citric acid cycle and the aerobic respiratory chain. The ability of S. typhimurium to grow on succinate, fumarate, and malate is dependent on the state of modification in position 37 of those tRNAs normally having ms2io6A37 and is not due to a second cellular function of tRNA (ms2io6A37)hydroxylase, the miaE gene product. We suggest that S. typhimurium senses the hydroxylation status of the isopentenyl group of the tRNA and will grow on succinate, fumarate, or malate only if the isopentenyl group is hydroxylated.  相似文献   

14.
15.
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNAOpt. We suspected a modification of the tRNAOptAUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNAOptAUG is converted to inosine. We identified tRNAOptAUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms.  相似文献   

16.
tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.  相似文献   

17.
The anticodon stem-loop (ASL) of transfer RNAs (tRNAs) drives decoding by interacting directly with the mRNA through codon/anticodon pairing. Chemically complex nucleoside modifications found in the ASL at positions 34 or 37 are known to be required for accurate decoding. Although over 100 distinct modifications have been structurally characterized in tRNAs, only a few are universally conserved, among them threonylcarbamoyl adenosine (t(6)A), found at position 37 in the anticodon loop of a subset of tRNA. Structural studies predict an important role for t(6)A in translational fidelity, and in vivo work supports this prediction. Although pioneering work in the 1970s identified the fundamental substrates for t(6)A biosynthesis, the enzymes responsible for its biosynthesis have remained an enigma. We report here the discovery that in bacteria four proteins (YgjD, YrdC, YjeE, and YeaZ) are both necessary and sufficient for t(6)A biosynthesis in vitro. Notably, YrdC and YgjD are members of universally conserved families that were ranked among the top 10 proteins of unknown function in need of functional characterization, while YeaZ and YjeE are specific to bacteria. This latter observation, coupled with the essentiality of all four proteins in bacteria, establishes this pathway as a compelling new target for antimicrobial development.  相似文献   

18.
We have constructed eight anticodon-modified Escherichia coli initiator methionine (fMet) tRNAs by insertion of synthetic ribotrinucleotides between two fragments ('half molecules') derived from the initiator tRNA. The trinucleotides, namely CAU (the normal anticodon), CAA, CAC, CAG, GAA, GAC, GAG and GAU, were joined to the 5' and 3' tRNA fragments with T4 RNA ligase. The strategy of reconstruction permitted the insertion of radioactive 32P label between nucleotides 36 and 37. tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes, and the following properties were evaluated: the stability of these eubacterial tRNA variants in the eukaryotic oocytes; the enzymatic modification of the adenosine at position 37 (3' adjacent to the anticodon) and aminoacylation of the chimeric tRNAs by endogenous oocyte aminoacyl-tRNA synthetases. In contrast to other variants, the two RNAs having CAU and GAU anticodons were stable and underwent quantitative modification at A-37. These results show that the enzyme responsible for the modification of A-37 to N-[N-(9-beta-D-ribofuranosylpurine-6-yl)carbamoyl]threonine (t6A) is present in the cytoplasm of oocytes and is very sensitive to the anticodon environment of the tRNA. Also, these same GAU and CAU anticodon-containing tRNAs are fully aminoacylated with the heterologous oocyte aminoacyl-tRNA synthetases in vivo. During the course of this work we developed a generally applicable assay for the aminoacylation of femtomole amounts of labelled tRNAs.  相似文献   

19.
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.  相似文献   

20.
Temperature-sensitive mutants of E. coli have been isolated which restrict the growth of strains of bacteriophage T4 which are dependent upon the function of a T4-coded amber or ochre suppressor transfer RNA. One such mutant restricts the growth of certain ochre but not amber suppressor-requiring phage. Analysis of the T4 tRNAs synthesized in this host revealed that many nucleotide modifications are significantly reduced. The modifications most strongly affected are located in the anticodon regions of the tRNAs. The T4 ochre suppressor tRNAs normally contain a modified U residue in the wobble position of the anticodon; it has been possible to correlate the absence of this specific modification in the mutant host with the restriction of suppressor activity. Furthermore, the extent of this restriction varies dramatically with the site of the nonsense codon, indicating that the modification requirement is strongly influenced by the local context of the mRNA. An analysis of spontaneous revertants of the E. coli ts mutant indicates that temperature sensitivity, restriction of phage suppressor function, and undermodification of tRNA are the consequences of a single genetic lesion. The isolation of a class of partial revertants to temperature insensitivity which have simultaneously become sensitive to streptomycin suggests that the translational requirement for the anticodon modification can be partially overcome by a change in the structure of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号