首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1(orc) mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1(orc) root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-beta-glucuronidase were aberrant in smt1(orc). Patterning defects in smt1(orc) resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1(orc), whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis.  相似文献   

2.
The Arabidopsis genome contains three distinct genes encoding sterol-C24-methyltransferases (SMTs) involved in sterol biosynthesis. The expression of one of them, STEROL METHYLTRANSFERASE 2;1, was modulated in 35S:SMT2;1 Arabidopsis in order to study its physiological function. Plants overexpressing the transgene accumulate sitosterol, a 24-ethylsterol which is thought to be the typical plant membrane reinforcer, at the expense of campesterol. These plants displayed a reduced stature and growth that could be restored by brassinosteroid treatment. Plants showing co-suppression of SMT2;1 were characterized by a predominant 24-methylsterol biosynthetic pathway leading to a high campesterol content and a depletion in sitosterol. Pleiotropic effects on development such as reduced growth, increased branching, and low fertility of high-campesterol plants were not modified by exogenous brassinosteroids, indicating specific sterol requirements to promote normal development. Thus SMT2;1 has a crucial role in balancing the ratio of campesterol to sitosterol in order to fit both growth requirements and membrane integrity.  相似文献   

3.
4.
5.
6.
Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency.  相似文献   

7.
Phototropins (phot1 and phot2 in Arabidopsis thaliana) relay blue light intensity information to the chloroplasts, which move toward weak light (the accumulation response) and away from strong light (the avoidance response). Chloroplast-actin (cp-actin) filaments are vital for mediating these chloroplast photorelocation movements. In this report, we examine in detail the cp-actin filament dynamics by which the chloroplast avoidance response is regulated. Although stochastic dynamics of cortical actin fragments are observed on the chloroplasts, the basic mechanisms underlying the disappearance (including severing and turnover) of the cp-actin filaments are regulated differently from those of cortical actin filaments. phot2 plays a pivotal role in the strong blue light–induced severing and random motility of cp-actin filaments, processes that are therefore essential for asymmetric cp-actin formation for the avoidance response. In addition, phot2 functions in the bundling of cp-actin filaments that is induced by dark incubation. By contrast, the function of phot1 is dispensable for these responses. Our findings suggest that phot2 is the primary photoreceptor involved in the rapid reorganization of cp-actin filaments that allows chloroplasts to change direction rapidly and control the velocity of the avoidance movement according to the light’s intensity and position.  相似文献   

8.
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17 allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli. This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.  相似文献   

9.
Plant peroxisomes play a pivotal role during postgerminative growth by breaking down fatty acids to provide fixed carbons for seedlings before the onset of photosynthesis. The enzyme composition of peroxisomes changes during the transition of the seedling from a heterotrophic to an autotrophic state; however, the mechanisms for the degradation of obsolete peroxisomal proteins remain elusive. One candidate mechanism is autophagy, a bulk degradation pathway targeting cytoplasmic constituents to the lytic vacuole. We present evidence supporting the autophagy of peroxisomes in Arabidopsis thaliana hypocotyls during seedling growth. Mutants defective in autophagy appeared to accumulate excess peroxisomes in hypocotyl cells. When degradation in the vacuole was pharmacologically compromised, both autophagic bodies and peroxisomal markers were detected in the wild-type vacuole but not in that of the autophagy-incompetent mutants. On the basis of the genetic and cell biological data we obtained, we propose that autophagy is important for the maintenance of peroxisome number and cell remodeling in Arabidopsis hypocotyls.  相似文献   

10.
11.
The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced ∼10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development.  相似文献   

12.
Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.  相似文献   

13.
14.
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit VACUOLAR PROTEIN SORTING2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.  相似文献   

15.
Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mm NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress.Peroxisomes are single membrane-bound organelles whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases as their basic enzymatic and are found in virtually all eukaryotic cell types (Corpas et al., 2001; Hayashi and Nishimura, 2006; Reumann et al., 2007; Pracharoenwattana and Smith, 2008; Palma et al., 2009). These oxidative organelles are characterized by metabolic plasticity, as their enzymatic content can vary according to the organism, cell/tissue type, and environmental conditions (Mullen et al., 2001; Hayashi and Nishimura, 2003; Corpas et al., 2009a). In higher plants, peroxisomes contain a complex battery of antioxidative enzymes, such as catalase, superoxide dismutase, the components of the ascorbate-glutathione cycle, and the NADP-dehydrogenases of the pentose-P pathway (Corpas et al., 2009a). The generation of superoxide radicals has also been reported in the matrices and membranes of peroxisomes (López-Huertas et al., 1999; del Río et al., 2006). All these findings point to the important role played by peroxisomes in the cellular metabolism of reactive oxygen species (Corpas et al., 2001, 2009a; del Río et al., 2006).Nitric oxide (NO) is a free radical involved in many physiological functions under normal and stress conditions in both animal and plant cells (Arasimowicz and Floryszak-Wieczorek, 2007; Corpas et al., 2007a, 2008; Neill et al., 2008). Unlike animal systems, knowledge of NO generation and subcellular location in plants remains largely elusive, and the data are sometimes contradictory and ambiguous (Zemojtel et al., 2006; Jasid et al., 2006; Gas et al., 2009). In previous studies, we detected l-Arg-dependent nitric oxide synthase (NOS) activity in isolated pea (Pisum sativum) leaf peroxisomes (Barroso et al., 1999). In a later study, using electron paramagnetic resonance techniques, we demonstrated the presence of NO in these types of peroxisomes (Corpas et al., 2004). However, several issues, such as whether NO is released into the cytosol and the physiological function of this free radical, remain unresolved.In this study, we provide an in vivo demonstration that Arabidopsis peroxisomes are essential for NO accumulation in the cytosol, thus participating in the generation of nitrosative stress under salinity conditions. In addition, using Arabidopsis mutants pex12 and pex13, we also suggest that these peroxins are involved in importing into peroxisomes the enzyme responsible for NO generation.  相似文献   

16.
In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.  相似文献   

17.
18.
19.
Cytokinesis is the division of the cytoplasm and its separation into two daughter cells. Cell plate growth and cytokinesis appear to require callose, but direct functional evidence is still lacking. To determine the role of callose and its synthesis during cytokinesis, we identified and characterized mutants in many members of the GLUCAN SYNTHASE-LIKE (GSL; or CALLOSE SYNTHASE) gene family in Arabidopsis (Arabidopsis thaliana). Most gsl mutants (gsl1–gsl7, gsl9, gsl11, and gsl12) exhibited roughly normal seedling growth and development. However, mutations in GSL8, which were previously reported to be gametophytic lethal, were found to produce seedlings with pleiotropic defects during embryogenesis and early vegetative growth. We found cell wall stubs, two nuclei in one cell, and other defects in cell division in homozygous gsl8 insertional alleles. In addition, gsl8 mutants and inducible RNA interference lines of GSL8 showed reduced callose deposition at cell plates and/or new cell walls. Together, these data show that the GSL8 gene encodes a putative callose synthase required for cytokinesis and seedling maturation. In addition, gsl8 mutants disrupt cellular and tissue-level patterning, as shown by the presence of clusters of stomata in direct contact and by islands of excessive cell proliferation in the developing epidermis. Thus, GSL8 is required for patterning as well as cytokinesis during Arabidopsis development.Cytokinesis divides the cytoplasm of a plant cell by the deposition of plasma membrane and a cell wall during late mitosis. This process requires the phragmoplast, a dynamic, plant-specific cytoskeletal and membranous array, which delivers vesicles containing lipids, proteins, and cell wall components to the division plane to construct the cell plate. Cell plate formation involves several stages: initiation through vesicle fusion, the formation of a tubular-vesicular network, a transition to a solely tubular phase, and then further fusion to form a fenestrated sheet (Samuels et al., 1995). The outward growth of the cell plate leads to its fusion with the parental cell wall (Jürgens, 2005a, 2005b; Backues et al., 2007).Key regulators of cytokinesis include KNOLLE, KEULE, KORRIGAN, and HINKEL, which when defective induce pleiotropic phenotypes and seedling lethality (Lukowitz et al., 1996; Nicol et al., 1998; Zuo et al., 2000; Assaad et al., 2001; Strompen et al., 2002). KNOLLE, a syntaxin homolog, is required for the fusion of exocytic vesicles via a SNARE/SNAP33 complex (Lukowitz et al., 1996; Heese et al., 2001). KEULE, a homolog of yeast Sec1p, regulates syntaxin function by interacting with KNOLLE (Waizenegger et al., 2000; Assaad et al., 2001). KORRIGAN is an endo-1,4-β-glucanase required for cell wall biogenesis during cytokinesis (Zuo et al., 2000). And HINKEL is a kinesin-related protein required for the reorganization of phragmoplast microtubules during cytokinesis (Strompen et al., 2002).Additional regulators include Formin5, TWO-IN-ONE (TIO), and Arabidopsis (Arabidopsis thaliana) dynamin-like proteins (ADLs; Kang et al., 2001, 2003; Hong et al., 2003; Collings et al., 2005; Ingouff et al., 2005; Oh et al., 2005). Formin5 localizes to the cell plate and is an actin-organizing protein involved in cytokinesis and cell polarity. TIO, a Ser/Thr protein kinase, functions in cytokinesis in plant meristems and in gametogenesis (Oh et al., 2005). Members of the Arabidopsis DRP family associate with the developing cell plate, whereas DRP1a (ADL1A) locally constricts tubular membranes, interacts with callose synthase, and may facilitate callose deposition into the lumen.Callose, a β-1,3-glucan polymer with β-1,6-branches (Stone and Clarke, 1992), is synthesized in both sporophytic and gametophytic tissues and appears to play various roles. Callose accumulates at the cell plate during cytokinesis, in plasmodesmata, where it regulates cell-to-cell communication, and in dormant phloem, where it seals sieve plates after mechanical injury, pathogen attack, and metal toxicity (Stone and Clarke, 1992; Samuels et al., 1995; Lucas and Lee, 2004).Twelve GLUCAN SYNYHASE-LIKE (GSL) genes (also known as CALLOSE SYNTHASE [CalS]) have been identified in the Arabidopsis genome based on sequence homology (Richmond and Somerville, 2000; Hong et al., 2001; Enns et al., 2005). A GSL that functions in callose deposition after injury and pathogen treatment is GSL5 (Jacobs et al., 2003). Five other members of the Arabidopsis GSL family are required for microgametogenesis. GSL1 and GSL5 act redundantly to produce a callosic wall that prevents microspore degeneration, and both are needed for fertilization (Enns et al., 2005). GSL2 is required for the callosic wall around pollen mother cells, for the patterning of the pollen exine (Dong et al., 2005), and for callose deposition in the wall and plugs of pollen tubes (Nishikawa et al., 2005). GSL8 and GSL10 are independently required for the asymmetric division of microspores and for the entry of microspores into mitosis (Töller et al., 2008; Huang et al., 2009).Callose is a major component of the cell plate, especially during later plate development (Kakimoto and Shibaoka, 1992; Samuels et al., 1995; Hong et al., 2001). Callose appears to structurally reinforce the developing cell plate after the breakdown of the phragmoplast microtubule array and during plate consolidation (Samuels and Staehelin, 1996; Rensing et al., 2002). It is likely that callose is synthesized at the cell plate rather than in the endoplasmic reticulum and in the Golgi (Kakimoto and Shibaoka, 1988). GSL6 (CalS1) appears to be involved in callose synthesis at the cell plate, since a 35S∷GFP-GSL6 fusion in transgenic BY-2 tobacco (Nicotiana tabacum) cells increases callose accumulation, and GFP fluorescence was found specifically at the cell plate (Hong et al., 2001). However, functional and genetic data on the role of any GSL in Arabidopsis sporophytic cytokinesis are still lacking.Here, we report that GSL8 (CalS10) is required for normal cytokinesis. In addition, gsl8 mutants exhibit excessive cell proliferation and abnormal cell patterning, phenotypes not previously reported for cytokinesis-defective mutants.  相似文献   

20.
The endoplasmic reticulum (ER) is composed of tubules, sheets, and three-way junctions, resulting in a highly conserved polygonal network in all eukaryotes. The molecular mechanisms responsible for the organization of these structures are obscure. To identify novel factors responsible for ER morphology, we employed a forward genetic approach using a transgenic Arabidopsis thaliana plant (GFP-h) with fluorescently labeled ER. We isolated two mutants with defects in ER morphology and designated them endoplasmic reticulum morphology1 (ermo1) and ermo2. The cells of both mutants developed a number of ER-derived spherical bodies, ∼1 μm in diameter, in addition to the typical polygonal network of ER. The spherical bodies were distributed throughout the ermo1 cells, while they formed a large aggregate in ermo2 cells. We identified the responsible gene for ermo1 to be GNOM-LIKE1 (GNL1) and the gene for ermo2 to be SEC24a. Homologs of both GNL1 and SEC24a are involved in membrane trafficking between the ER and Golgi in yeast and animal cells. Our findings, however, suggest that GNL1/ERMO1 and SEC24a/ERMO2 have a novel function in ER morphology in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号